Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T17:26:40.207Z Has data issue: false hasContentIssue false

Comparison of Oxygen and Hydrogen Gettering at High-Temperature Post-Implantation Annealing of Hydrogen and Helium Implanted Czochralski Silicon

Published online by Cambridge University Press:  10 February 2011

R. Job
Affiliation:
University of Hagen, P. O. Box 940, D-58084 Hagen, Germany
W. R. Fahrner
Affiliation:
University of Hagen, P. O. Box 940, D-58084 Hagen, Germany
A. I. Ivanov
Affiliation:
Belarussian State Polytechnical Academy, Skariny Ave. 65, 220027, Minsk, Belarus
L. Palmetshofer
Affiliation:
J. Kepler University, A-4040 Linz, Austria
A. G Ulyashin
Affiliation:
Belarussian State Polytechnical Academy, Skariny Ave. 65, 220027, Minsk, Belarus
Get access

Abstract

P-type Czochralski (Cz) Si was implanted with H (180 keV, 2.7.1016 cm−2) or He (300 keV, 1.1016 cm−2) ions. The gettering of O and H atoms by the buried implantation damage layers during annealing up to 4 hours (1000°C in H2 or N2 ambient) was studied by secondary ion mass spectroscopy (SIMS) and spreading resistance probe (SRP) measurements. Buried defect layers act as good getter centers for O and H atoms at appropriate heat treatments. The enhanced gettering of O atoms in H implanted Cz Si (as compared to the gettering of O in He implanted samples) as well as the enhanced gettering of O during annealing in H2 flow (as compared to N2 ambient) can be explained by a hydrogen enhanced O diffusion towards the defect layers. According to a strong accumulation of O at the buried damage layers and near the surface some anomalies of the SRP profiles can be observed after post-implantation annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cerofolini, G.F., Meda, L., “Physical Chemistry of, in and on Silicon“, Springer Series in Materials Science Vol. 8, Springer Verlag, Berlin, Heidelberg (1989).Google Scholar
2. Pankove, J.I., Johnson, N.M. (editors), “Hydrogen in Semiconductors“, Academic Press, New York (1991).Google Scholar
3. Job, R., Fahrner, W.R., Ulyashin, A.G., Bumay, Yu.A., lvanov, A.I., Palmetshofer, L., Solid State Phenomena 57–58, 91 (1997).Google Scholar
4. Ulyashin, A.G., Bumay, Y.A., Fahrner, W.R., Ivanov, A.I., Job, R., Palmetshofer, L., MRS Symp. Proc. 469, 95 (1997).Google Scholar
5. Tamura, M., Mater. Sci. Reports 6, 141 (1991).Google Scholar
6. Job, R., Borchert, D., Bumay, Y.A., Fahrner, W.R., Grabosch, G., Khorunzhii, I.A., Ulyashin, A.G., MRS Symp. Proc. 469, 101 (1997).Google Scholar
7. Shimura, F. (editor), “Oxygen in Silicon“, Academic Press, New York (1994).Google Scholar
8. Wong-Leung, J., Ascheron, C.F., Petravic, M., Elliman, R.G., Williams, J.S., Appl. Phys. Lett. 66, 1231 (1995).Google Scholar
9. Ascheron, C.E., Wong-Leung, J., Petrovic, M., Williams, J.S., in: “Ion Beam Modifications of Materials“, editors: Williams, J.S., Elliman, R.G., Ridgway, M.C., Elsevier Science B.V., Amsterdam (1996), p. 832.Google Scholar
10. Shrikanth, K., Ashok, S., J. Appl. Phys. 70, 4779 (1991).Google Scholar
11. Hölzlein, K., Pensl, G., Schulz, M., Appl. Phys. A 34, 155 (1984).Google Scholar
12. Hölzlein, K., Pensi, G., Schulz, M., Johnson, N.M., Appi. Phys. Lett. 48, 916 (1986).Google Scholar
13. Ashok, S., Srikanth, K., Nucl. Instr. and Meth. in Phys. Res. B 106, 372 (1995).Google Scholar
14. Vettese, F., Sicart, J., Robert, J.L., J. Appl. Phys. 65, 1208 (1989).Google Scholar
15. Medernach, J.W., Hill, T.A., Myers, S.M., Headley, T.J., J. Electrochem. Soc. 143, 725 (1996).Google Scholar
16. Pearton, S.J., Corbett, J.W., Stavola, M., “Hydrogen in Crystalline Semiconductors“, Springer-Verlag, Berlin, Heidelberg, New York (1992).Google Scholar
17. Seager, C.H., Meyrs, S.M., Anderson, R.A., Warren, W.L., Follstaedt, D.M., Phys. Rev. B 50, 2458 (1994).Google Scholar
18. Meyrs, S.M., Follstaedt, D.M., Petersen, G.A., Seager, C.H., Stein, H.J., Wampler, W.R., Nucl. Instr. and Meth. in Phys. Res. B 106, 379 (1995).Google Scholar