Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T09:34:46.176Z Has data issue: false hasContentIssue false

Comparison of Ordered and Modulated Structures in InGaP Alloy Semiconductors grown by MOCVD, Chloride-Vpe and LPE Methods

Published online by Cambridge University Press:  25 February 2011

O Ueda
Affiliation:
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi 243-01, Japan
T. Kato
Affiliation:
Yamanashi University, 4-3-11 Takeda, Kofu 400, Japan
T. Matsumoto
Affiliation:
Yamanashi University, 4-3-11 Takeda, Kofu 400, Japan
M. Hoshino
Affiliation:
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi 243-01, Japan
M. Takechi
Affiliation:
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi 243-01, Japan
M. Ozeki
Affiliation:
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi 243-01, Japan
Get access

Abstract

Ordered and modulated structures in InGaP alloy semiconductors grown on (001) GaAs substrates by metalorganic chemical vapor deposition, chloride-vapor phase epitaxy, and liquid phase epitaxy have been systematically studied by transmission electron microscopy. In InGaP grown by metalorganic chemical vapor deposition at 630°C, strong ordering of CuPt-type has been observed, which is associated with an abnormality in the photoluminescence peak energy. For crystals grown by chloride-vapor phase epitaxy, CuPt-type ordered structures have also been observed. However, the degree of ordering is weaker in the latter case and crystals grown at 576-740°C exhibit normal photoluminescence peak energies. On the other hand, in crystals grown by liquid phase epitaxy, no superstructure spots are found in the electron diffraction patterns and the crystals exhibit normal photoluminescence peak energies. Modulated structures do not depend on the growth method since they are observed in all crystals. From these results, it has been concluded that the ordered structures are not generated under thermal equilibrium conditions but rather by the diffusion and reconstruction of deposited atoms on the growth surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kuan, T. S., Kuech, T. F., Wang, W. I., and Wilkie, E. L., Phys. Rev. Lett. 54, 210 (1985).Google Scholar
2 Ueda, O., Takikawa, M., Komeno, J., and Utnebu, I., Japan. J. Appl. Phys. 26, L1824 (1987).Google Scholar
3 Ueda, O., Takikawa, M., Takechi, M., Komeno, J., and Umebu, I., J. Crystal Growth 93, 418 (1988).Google Scholar
4 Kondow, M., Kakibayashi, H., and Minagawa, S., J. Crystal Growth 88, 291 (1988).Google Scholar
5 Gavrilovic, P., Dabkowski, F. P., Mechan, M., Williams, J. E., Studius, W., Shahid, M. A., and Mahajan, S., J. Crystal Growth 93, 426 (1988).Google Scholar
6 Gomyo, A., Suzuki, T., and Iijima, S., Phys. Rev. Lett. 60, 2645 (1988).Google Scholar
7 Suzuki, T., Gomyo, A., and Iijima, S., J. Crystal Growth 93, 396 (1988).Google Scholar
8 Kondow, M., Kakibayashi, H., Minagawa, S., Inoue, Y., Nishino, T., and Hamakawa, Y., J. Crystal Growth 93, 412 (1988).Google Scholar
9 Kondow, M., Kakibayashi, H., Tanaka, T., and Minagawa, S., Phys. Rev. Lett. 63, 884 (1989).Google Scholar
10 Kuan, T. S., Wang, W. I., and Wilkie, L., Appl. Phys. Lett. 51, 51 (1987).Google Scholar
11 Shahid, M. A., Mahajan, S., Laughlin, D. E., and Cox, H. M., Phys. Rev. Lett. 58, 2567 (1987).Google Scholar
12 Nakayama, H. and Fujita, H., Inst. Phys. Conf. Ser. 79, 289 (1986).Google Scholar
13 Norman, A. G., Mallard, R. E., Murgatroyd, I. J., Booker, G. R., Moore, A. H., and Scott, M. D., Inst Phys. Conf. Ser. 87, 77 (1987).Google Scholar
14 Ueda, O., Fujii, T., Nakada, Y., Yamada, H., and Umebu, I., J. Crystal Growth 95, 38 (1989).Google Scholar
15 Jen, H. R., Cherng, M. J., and Stringfellow, G. B., Appl. Phys. Lett. 48, 1603 (1986).Google Scholar
16 Ihm, Y. E., Otsuka, N., Klem, J., and Morkoc, H., Appl. Phys. Lett. 51, 2013 (1987).Google Scholar
17 Plano, W. E., Nam, D. W., Major, J. S. Jr., Hsieh, K. C., and Holonyak, N. Jr., Appl. Phys. Lett. 53, 2537 (1988).Google Scholar
18 Jen, H. R., Cao, D. S., and Stringfellow, G. B., Appl. Phys. Lett. 54, 1890 (1989).Google Scholar
19 Jen, H. R., Ma, K. Y., and Stringfellow, G. B., Appl. Phys. Lett. 54, 1154 (1989).Google Scholar
20 Henoc, P., Izrael, A., Quillec, M., and Launois, H., Appl. Phys. Lett. 40, 963 (1982).Google Scholar
21 Ueda, O., Isozumi, S., and Komiya, S., Japan. J. Appl. Phys. 23, 241 1984.Google Scholar
22 Norman, A. G. and Booker, G. R., J. Appl. Phys. 57, 4715 (1985).Google Scholar
23 Treacy, M. M., Gibson, J. M., and Howie, A., Phil. Mag. A51, 389 (1985).Google Scholar
24 Chu, S. N. G., Nakahara, S., Strege, K. E., and Johnston, W. D. Jr., J. Appl. Phys. 57, 4610 (1985).Google Scholar
25 Hoshino, M., Kodama, K., Kitahara, K., and Ozeki, M., Appl. Phys. Lett. 48, 770 (1986).Google Scholar
26 Hoshino, M., Kodama, K., Kitahara, K., and Ozeki, M., J. Crystal Growth 96, 188 (1989).Google Scholar
27 Kato, T., Matsumoto, T., and Ishida, T., J. Crystal Growth 71, 728 (1985).Google Scholar
28 Khachaturyan, A. G., Phys. Status Solidi B60, 9 (1973).Google Scholar
29 Shaw, D. W., J. Crystal Growth 31, 130 (1975).Google Scholar