Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-04T21:43:04.264Z Has data issue: false hasContentIssue false

Comparison of Molecular Monolayer Interface Treatments in Organic-inorganic Photovoltaic Devices

Published online by Cambridge University Press:  31 January 2011

Jamie M. Albin
Affiliation:
[email protected], Colorado School of Mines, Physics, Golden, Colorado, United States
Darick J. Baker
Affiliation:
[email protected], Colorado School of Mines, Physics, Golden, Colorado, United States
Cary G. Allen
Affiliation:
[email protected], Colorado School of Mines, Physics, 80401, Colorado, United States
Thomas E. Furtak
Affiliation:
[email protected], United States
Reuben T. Collins
Affiliation:
[email protected], Colorado School of Mines, Physics, Golden, Colorado, United States
Dana C. Olson
Affiliation:
[email protected], United States
David S. Ginley
Affiliation:
[email protected], United States
Christian C. Weigand
Affiliation:
[email protected], Norwegian University of Science and Technology, Electronics and Telecommunications, Trondheim, Norway
Astrid-Sofie Vardoy
Affiliation:
[email protected], Norwegian University of Science and Technology, Electronics and Telecommunications, Trondheim, Norway
Cecile Ladam
Affiliation:
[email protected], SINTEF, Materials and Chemistry, Trondheim, Norway
Get access

Abstract

In this study, we explore the effects of alkyl surface terminations on ZnO for inverted, planar ZnO/poly(3-hexylthiophene) (P3HT) solar cells using two different attachment chemistries. Octadecylthiol (ODT) and octadecyltriethoxysilane (OTES) molecules were used to create 18-carbon alkyl surface molecular layers on sol gel-derived ZnO surfaces. Molecular layer formation was confirmed and characterized using water contact angle measurements, infrared (IR) transmission measurements, and X-ray photoelectron spectroscopy (XPS). The performances of the ZnO/P3HT photovoltaic cells made from ODT- and OTES-functionalized ZnO were compared. The ODT-modified devices had higher efficiencies than OTES-modified devices, suggesting that differences in the attachment scheme affect the efficiency of charge transfer through the molecular layers at the treated ZnO surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Beek, W. J. E. Wienk, M. M. Kemerink, M. Yang, X. and Janssen, R. A. J. J. Phys. Chem. B 109, 95059516 (2005).Google Scholar
2 Monson, T. C. Lloyd, M. T. Olson, D. C. Lee, Y. and Hsu, J. W. P. Adv. Mater. 20, 4755 (2008).Google Scholar
3 Goh, C. Scully, S. R. and McGehee, M. D. J. Appl. Phys. 101, 114503 (2007).Google Scholar
4 Allen, C. G. Baker, D. J. Albin, J. M. Oertli, H. E. Gillaspie, D. T. Olson, D. C. Furtak, T. E. and Collllins, R. T., Langmuir 24, 1339313398 (2008).Google Scholar
5 Walba, D. M. Liberko, C. A. Korblova, E. and Farrow, M. Liq. Crys. 31, 481489 (2004).Google Scholar
6 Stalder, A. F. Kulik, G. Sage, D. and Hoffmann, P. Colloids Surf. A 286, 92103 (2006).Google Scholar
7 Onclin, S. Ravoo, B. J. and Reinhoudt, D. N., Angew. Chem. Int. Ed. 44, 62826304 (2005).Google Scholar
8 Rosu, D. M. Jones, J. C. Hsu, J. W. P. Kavanagh, K. L. Tsankov, D. Schade, U. Esser, N. and Hinrichs, K. Langmuir 25 919923 (2009).Google Scholar
9 White, L. D. and Tripp, C. P. J. Colloid Interface Sci. 227, 237243 (2000).Google Scholar
10 Olson, D. C. Lee, Y. White, M. S. Kopidakis, N. Shaheen, S. E. Ginley, D. S. Voigt, J. A. and Hsu, J. W. P. J. Phys. Chem. C. 111, 1664016645 (2007).Google Scholar