Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T07:44:28.740Z Has data issue: false hasContentIssue false

A Comparison of Mechanical Properties and Scaling Law Relationships for Silica Aerogels and their Organic Counterparts

Published online by Cambridge University Press:  21 February 2011

R. W. Pekalaa
Affiliation:
Chemistry & Materials Science Department, Lawrence Livermore National Laboratory, Livermore, CA 94550.
L. W. Hrubesh
Affiliation:
Chemistry & Materials Science Department, Lawrence Livermore National Laboratory, Livermore, CA 94550.
T. M. Tillotson
Affiliation:
Chemistry & Materials Science Department, Lawrence Livermore National Laboratory, Livermore, CA 94550.
C. T. Alviso
Affiliation:
Chemistry & Materials Science Department, Lawrence Livermore National Laboratory, Livermore, CA 94550.
J. F. Poco
Affiliation:
Chemistry & Materials Science Department, Lawrence Livermore National Laboratory, Livermore, CA 94550.
J. D. LeMay
Affiliation:
Chemistry & Materials Science Department, Lawrence Livermore National Laboratory, Livermore, CA 94550.
Get access

Abstract

Aerogels are a unique type of ultrafine cell size, low density foam. Traditional aerogels are inorganic, but the synthesis of organic aerogels has also been reported. In all cases, solution chemistry can be used to tailor the structure and properties of the resultant aerogels. This study examines the microstructural dependence of the compressive mechanical properties of silica, resorcinol-formaldehyde, carbon, and melamine-formaldehyde aerogels.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Brinker, C.J. and Scherer, G.W., Sol-Gel Science (Academic Press, New York, 1990).Google Scholar
[2] Aerogels, ed. by Fricke, J. (Springer-Verlag, New York, 1986).Google Scholar
[3] Schaefer, D.W., Science 243, 1023 (1989).CrossRefGoogle Scholar
[4] Schaefer, D.W., MRS Bulletin 13(2), 22 (1988).Google Scholar
[5] Brinker, C.J. and Scherer, G.W., J. Non-Cryst. Solids 70, 301 (1985).Google Scholar
[6] Tillotson, T.M., Hrubesh, L.W., and Thomas, I.M., in Better Ceramics Through Chemistry III, ed. by Brinker, C.J., Clark, D.E., and Ulrich, D.R. (MRS, Pittsburgh, 1988) p. 685.Google Scholar
[7] Tillotson, T.M. and Hrubesh, L.W., in Better Ceramics Through Chemistry IV, ed. by Brinker, C.J., Clark, D.E., Ulrich, D.R., and Zelinski, B.J. (MRS, Pittsburgh, 1990) in press.Google Scholar
[8] Hrubesh, L.W., Tillotson, T.M., and Poco, J.F., Better Ceramics Through Chemistry IV, (MRS, Pittsburgh, 1990) in press.Google Scholar
[9] Pekala, R.W. and Kong, F.M., J. de Physique Coll. Suppl. 50(4), C433 (1989).Google Scholar
[10] Pekala, R.W., J. Mat. Sci. 24, 3221 (1989).Google Scholar
[11] Pekala, R.W. and Kong, F.M., Polym. Prpts. 30(1), 221 (1989).Google Scholar
[12] Pekala, R.W. and Alviso, C.T., in Better Ceramics Through Chemistry IV, ed. by Brinker, C.J., Clark, D.E., Ulrich, D.R., and Zelinski, B.J. (MRS, Pittsburgh, 1990) in press.Google Scholar
[13] Gibson, L.J. and Ashby, M.R., Proc. Royal Soc. Lond. 382(A), 43 (1982).Google Scholar
[14] Woignier, T., Phalippou, J., and Vacher, R., J. Mat. Res., 4(3), 688 (1989).Google Scholar
[15] Woignier, T., Phalippou, J., Sempere, R., and Pelous, J., J. Phys. Fr. 49, 289 (1988).Google Scholar
[16] Pekala, R.W., Alviso, C.T., and LeMay, J.D., J. Non-Cryst. Solids, accepted.Google Scholar
[17] LeMay, J.D., Pekala, R.W., and Hrubesh, L.W., Pacific Polym. Prpts. 1, 295 (1989).Google Scholar