Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T01:35:32.082Z Has data issue: false hasContentIssue false

A Comparison of Intrinsic Point Defect Properties in Si and Ge

Published online by Cambridge University Press:  01 February 2011

Jan Vanhellemont
Affiliation:
[email protected], Ghent University, Department of Solid State Sciences, Krijgslaan 281 S1, Ghent, N/A, Belgium
Piotr Spiewak
Affiliation:
[email protected], Warsaw University of Technology, Materials Design Division, Faculty of Materials Science and Engineering, Woloska 141, Warsaw, N/A, Poland
Koji Sueoka
Affiliation:
[email protected], Okayama Prefectural University, Department of System Engineering, 111 Kuboki, Soja, Okayama, N/A, Japan
Eddy Simoen
Affiliation:
[email protected], IMEC, Kapeldreef 75, Leuven, N/A, Belgium
Igor Romandic
Affiliation:
[email protected], Umicore EOM, Watertorenstraat 33, Olen, N/A, Belgium
Get access

Abstract

Intrinsic point defects determine to a large extent the semiconductor crystal quality both mechanically and electrically not only during crystal growth or when tuning polished wafer properties by thermal treatments, but also and not the least during device processing. Point defects play e.g. a crucial role in dopant diffusion and activation, in gettering processes and in extended lattice defect formation.

Available experimental data and results of numerical calculation of the formation energy and diffusivity of the intrinsic point defects in Si and Ge are compared and discussed. Intrinsic point defect clustering is illustrated by defect formation during Czochralski crystal growth.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Vanhellemont, J., Śpiewak, P. and Sueoka, K., J. Appl. Phys. 101 (2007) 036103.Google Scholar
2. Vanhellemont, J. and Simoen, E., J. Electrochem. Soc. 154 (2007) H572.Google Scholar
3. Sueoka, K., Śpiewak, P. and Vanhellemont, J., submitted for publication in J. Electrochem. Soc.Google Scholar
4. Śpiewak, P., Vanhellemont, J., Sueoka, K., Kurzydlowski, K.J. and Romandic, I., J. Appl. Phys.,in press.Google Scholar
5. Voronkov, V.V. and Falster, R., Materials Science and Engineering B 134 (2006) 227.Google Scholar
6. Giese, A., Stolwijk, N. A. and Bracht, H., Appl. Phys. Lett. 77 (2000) 642.Google Scholar
7. Whan, R. E., Phys. Rev. 140 (1965) A690.Google Scholar
8. Ershov, S.N., Panteleev, V.A., Nagornkh, S.N. and Chernyakhovskii, V.V., Sov. Phys. Solid State 19 (1977) 187.Google Scholar
9. Hiraki, A., Journal of the Physical Society of Japan 21 (1966) 34.Google Scholar
10. Shaw, D., phys. stat. sol. (a) 72 (1975) 11.Google Scholar
11. Lemke, H. and S̈dkamp, W., phys. stat. sol. (a) 176 (1999) 843.Google Scholar
12. Larsen, T.L., Jensen, L., L̈dge, A., Riemann, H. and Lemke, H.: J. Crystal Growth 230 (2001) 300.Google Scholar
13. Ebe, T., J. Crystal Growth 203 (1999) 387.Google Scholar
14. Gosele, U., Frank, W., Seeger, A., Solid State Comm. 45 (1982) 31.Google Scholar
15. Antoniadis, D.A., Moscowitz, I., J. Appl. Phys. 53 (1982) 6788.Google Scholar
16. Dornberger, E., Sinno, T., Esfandyari, J., Vanhellemont, J., Brown, R.A., Ammon, W. von, High Purity Silicon V, 98-13, Electrochem. Soc. Inc., 1998, p. 170.Google Scholar
17. Vanhellemont, J., Dornberger, E., Gräf, D., Esfandyari, J., Lambert, U., Schmolke, R., Ammon, W. von and Wagner, P., in Proceedings of The Kazusa Akademia Park Forum on The Science and Technology of Silicon Materials, Kazusa Akademia Park, Chiba, Japan, (1997) p.173.Google Scholar
18. Hens, S., Vanhellemont, J., Poelman, D., Clauws, P., Romandic, I., Theuwis, A., Holsteyns, F. and Steenbergen, J. Van, Appl. Phys. Lett. 87 (2005) 061915.Google Scholar