Hostname: page-component-5c6d5d7d68-lvtdw Total loading time: 0 Render date: 2024-08-19T13:52:12.461Z Has data issue: false hasContentIssue false

Comparison of deep level spectra of MBE- and MOCVD-grown InGaAsN

Published online by Cambridge University Press:  01 February 2011

R. J. Kaplar
Affiliation:
Department of Electrical Engineering, Ohio State University, Columbus, OH 43210
S. A. Ringel
Affiliation:
Department of Electrical Engineering, Ohio State University, Columbus, OH 43210
Steven R. Kurtz
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
A. A. Allerman
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
J. F. Klem
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Get access

Abstract

Deep level transient spectroscopy (DLTS) studies of both p-type (uid) and n-type (Sidoped), lattice-matched, 1.05 eV bandgap InGaAsN grown by molecular-beam epitaxy (MBE) are reported, and the results are compared to previous measurements of similar materials grown by metal-organic chemical-vapor deposition (MOCVD). In MBE-grown p-type InGaAsN, two majority-carrier hole traps were observed: H3' (0.37 eV) and H4' (0.51 eV), and no evidence was found for the presence of minority-carrier electron traps. These two traps appear to be similar to two levels, H3 (0.48 eV) and H4 (0.5 eV), previously characterized in MOCVD-grown InGaAsN. In MBE-grown n-type InGaAsN, we observed a shallow distribution of electron levels, E1' (0 < EA < 0.35 eV), as well as a deep electron trap E4' (0.56 eV) and a deep hole trap H5' (0.71 eV). E1' appears to be coincident with a superposition of two levels observed in MOCVD-grown InGaAsN, a shallow distribution termed E1 (0 < EA < 0.20 eV) and a discrete (though broadened) level E3 (0.34 eV). Further, E4' appears to be similar in character to a level observed in MOCVD-grown material, E4 (0.82 eV), although a disparity in activation energy exists. This disparity may be due to a temperature-dependent capture cross-section for one or both levels, a possibility that is currently under investigation. In contrast, H5' appears to have no analogue in MOCVD-grown material and thus may be unique to the MBE growth technique.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Geisz, J. F., Friedman, D. J., Olson, J. M., Kurtz, Sarah R., and Keyes, B. M., J. Cryst. Growth 195, 401 (1998)Google Scholar
2. Friedman, D. J., Geisz, J. F., Kurtz, Sarah R., and Olson, J. M., J. Cryst. Growth 195, 409 (1998)Google Scholar
3. Kurtz, Steven R., Allerman, A. A., Jones, E. D., Gee, J. M., Banas, J. J., and Hammons, B. E., Appl. Phys. Lett. 74, 729 (1999)Google Scholar
4. Kondow, M., Uomi, K., Niwa, A., Kitatani, T., Watahiki, S., and Yazawa, Y., Jpn. J. Appl. Phys. Part 1 35, 1273 (1996)Google Scholar
5. Yang, X., Heroux, J. B., Jurkovic, M. J., and Wang, W. I, Appl. Phys. Lett. 76, 795 (2000)Google Scholar
6. Coldren, C. W., Larson, M. C., Spruytte, S. G., and Harris, J. S., Elect. Lett. 36, 951 (2000)Google Scholar
7. Choquette, K. D., Klem, J. F., Fisher, A. J., Blum, O., Allerman, A. A., Fritz, I. J., Kurtz, Steven R., Breiland, W. G., Sieg, R. M., Geib, K. M., Scott, J. W., and Naone, R. L., Elect. Lett. 36, 1388 (2000)Google Scholar
8. Jackson, A. W., Naone, R. L., Dalberth, M. J., Smith, J. M., Malone, K. J., Kisker, D. W., Klem, J. F., Choquette, K. D., Serkland, D. K., and Geib, K. M., Elect. Lett. 37, 355 (2001)Google Scholar
9. Sato, S. and Satoh, S., J. Cryst. Growth 192, 381 (1998)Google Scholar
10. Ellmers, C., Höhnsdorf, F., Koch, J., Agert, C., Leu, S., Karaiskaj, D., Hoffman, M., Stolz, W., and Rühle, W. W., Appl. Phys. Lett. 74, 2271 (1999)Google Scholar
11. Li, N. Y., Hains, C. P., Yang, K., Lu, J., Cheng, J., and Li, P. W., Appl. Phys. Lett. 75, 1051 (1999)Google Scholar
12. Kurtz, Steven R., Allerman, A. A., Seeger, C. H., Sieg, R. M., and Jones, E. D., Appl. Phys. Lett. 77, 400 (2000)Google Scholar
13. Kwon, D., Kaplar, R. J., Ringel, S. A., Allerman, A. A., Kurtz, Steven R., and Jones, E. D., Appl. Phys. Lett. 74, 2830 (1999)Google Scholar
14. Balcioglu, A., Ahrenkiel, R. K., and Friedman, D. J., Appl. Phys. Lett. 76, 2397 (2000)Google Scholar
15. Kaplar, R. J., Kwon, D., Ringel, S. A., Allerman, A. A., Kurtz, Steven R., Jones, E. D., and Sieg, R. M., Sol. Ener. Mat. Sol. Cells 69, 85 (2001)Google Scholar
16. Kaplar, R. J., Arehart, A. R., Ringel, S. A., Allerman, A. A., Sieg, R. M., and Kurtz, Steven R., J. Appl. Phys. 90, 3405 (2001)Google Scholar
17. , Yang, Heroux, J. B., Jurkovic, M. J., and Wang, W. I., J. Vac. Sci. Tech. B 17, 1144 (1999)Google Scholar
18. Spruytte, S. G., Coldren, C. W., Harris, J. S., Wampler, W., Krispin, P., Ploog, K., and Larson, M. C., J. Appl. Phys. 89, 4401 (2001)Google Scholar