Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-07T13:36:14.395Z Has data issue: false hasContentIssue false

Comparison of Dark and Light-Induced Annealing of Metastable Defects in a-Si:H

Published online by Cambridge University Press:  16 February 2011

Helena Gleskova
Affiliation:
Princeton University, Department of Electrical Engineering, Princeton, NJ 08544
M. Nakata
Affiliation:
Princeton University, Department of Electrical Engineering, Princeton, NJ 08544
S. Wagner
Affiliation:
Princeton University, Department of Electrical Engineering, Princeton, NJ 08544
Get access

Abstract

We propose a rate law that unifies the dark and light-induced annealing of metastable defects in hydrogenated Amorphous silicon (a-Si:H). Its form is dN/dt ∼ - C Naf (T), where N is the defect density, C the concentration of free electrons (holes), f (T) a dispersive function, t the time, and T the temperature. Special dark and light-annealing experiments, designed to keep the free electron density constant, were conducted to eliminate C from the rate law. We find that f (T) for the dark annealing process differs from that for light-annealing. We calculated the thermal activation energies for the decay of N to 1/e of its initial value. They are 1.56±0.2 eV for dark annealing and 0.91±0.2 eV for light-induced annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bube, R.H. and Redfield, D., J. Appl. Phys. 66, 820 (1989).CrossRefGoogle Scholar
2. Meaudre, R. and Meaudre, M., Phys. Rev. B 45, 12134 (1992).CrossRefGoogle Scholar
3. Wu, Z. Y., Siefert, J. M. and Equer, B., J. Non-Cryst. Solids 137–138, 227 (1991).CrossRefGoogle Scholar
4. Graeff, C.F.O., Buhleier, R. and Stutzmann, M., Appl. Phys. Lett. 62, 3001 (1993).CrossRefGoogle Scholar
5. Gleskova, H., Morin, P.A. and Wagner, S., Appl. Phys. Lett. 62, 2063 (1993).CrossRefGoogle Scholar
6. Gleskova, H., Bullock, J.N. and Wagner, S., J. Non-Cryst. Solids 164–166, 183 (1993).CrossRefGoogle Scholar
7. Street, R.A., Appl. Phys. Lett. 59, 1084 (1991).CrossRefGoogle Scholar
8. Santos, P.V., Johnson, N.M. and Street, R.A., Phys. Rev. Lett. 67, 2686 (1991).CrossRefGoogle Scholar
9. Slobodan, D., Aljishi, S., Schwartz, R. and Wagner, S. in Materials Issues in Aplications of Amorphous Silicon Technology, edited by Adler, D., Madan, A. and Thompson, M.J. (Mat. Res. Soc. Symp. Proc. 49, Pittsburgh, PA, 1985) pp. 153160.Google Scholar
10. Vanecek, M., Kocka, J., Stuchlik, J., Kosicek, Z., Stika, O. and Triska, A., Solar Energy Materials 8, 411 (1983).CrossRefGoogle Scholar
11. Smith, Z.E., Chu, V., Shepard, K., Aljishi, S., Slobodin, D., Kolodzey, J., Wagner, S. and Chu, T.L., Appl. Phys. Lett. 50, 1521 (1987).CrossRefGoogle Scholar
12. Gleskova, H., Morin, P.A. and Wagner, S. in Amorphous Silicon Technology, edited by Schiff, E.A., Thompson, M.J., Madan, A., Tanaka, K. and LeComber, P.G. (Mat. Res. Soc. Symp. Proc. 297, Pittsburgh, PA, 1993) pp. 589594.Google Scholar
13. Caputo, D., Bullock, J., Gleskova, H. and Wagner, S., this proceeding.Google Scholar