Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-14T02:41:05.802Z Has data issue: false hasContentIssue false

A Comparison of (100) Hg1−x Cdx Te and Hg1−x ZnxTe Grown By Molecular Beam Epitaxy

Published online by Cambridge University Press:  26 February 2011

R. D. Feldman
Affiliation:
AT & T Bell Laboratories, Holmdel, N.J. 07733
R. F. Austin
Affiliation:
AT & T Bell Laboratories, Holmdel, N.J. 07733
P. M. Bridenbaugh
Affiliation:
AT & T Bell Laboratories, Holmdel, N.J. 07733
Get access

Abstract

Films of HgCdTe with x < 0.6 and of HgZnTe with x < 0.26 have been grown by molecular beam epitaxy (MBE). Very high electron mobilities have been achieved for both materials in the small bandgap region. Hall mobilities at 77K reach 4.8 × 105 cm2 /V-s for Hg0 87 Zn0.13 Te, and 3.1 × 105 cm2/V-s for Hg0.87 Zn0.13 Te. HgCdTe growth was easily extended to the 1.5 – 3 μm wave length range. Attempts to extend HgZnTe to these bandgaps were unsuccessful due to defects that are induced by surface roughness in high Zn-content films. These results suggest that HgCdTe is the more suitable material for MBE growth for near infrared applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nguyen Duy, T., Durand, A., and Lyot, J. L in Materials for Infrared Detectors and Sources, edited by Farrow, R. F. C., Schetzina, J. F., and Cheung, J. T. (Mater. Res. Soc. Proc. 90, Boston, MA 1986) pp. 8190.Google Scholar
2.Thompson, J., Mackett, P., Jenkin, G. T., Gori, P., and Nguyen Duy, T., presented at the International II–VI Conference, Monterey, CA, 1987 (unpublished).Google Scholar
3.Sher, A., Chen, A.-B., Spicer, W. E., and Shih, C.-K., J. Vac. Sci. Technol. A3, 105 (1985).Google Scholar
4.Feldman, R. D., Oron, M., Austin, R. F., and Opila, R. L., J. Appl. Phys. (to be published).Google Scholar
5.Feldman, R. D., Austin, R. F., Kisker, D. W., Jeffers, K. S., and Bridenbaugh, P. M., Appl. Phys. Lett. 48, 248 (1986).Google Scholar
6.Arias, J. M., Shin, S. H., Cheung, J. T., Chen, J. S., Sivananthan, S., Reno, J., and Faurie, J. P., J. Vac. Sci. Technol. A5, 3133 (1987).Google Scholar
7.Feldman, R. D., Nakahara, S., Austin, R. F., Boone, T., Opila, R. L., and Wynn, A. S., Appl. Phys. Lett. 51, 1239 (1987).Google Scholar
8.Sher, A., Eger, D., Zemel, A., Feldstein, H., and Raizman, A., J. Vac. Sci. Technol. A 4, 2024 (1986).Google Scholar
9.Faurie, J. P., this conference.Google Scholar
10.Ghandhi, S. K., this conference.Google Scholar
11.Lu, P.-Y., Williams, L. M., Wang, C.-H., and Chu, S. N. G., this conference.Google Scholar
12.Faurie, J. P., Reno, J., Sivananthan, S., Sou, I. K., Chu, X., Boukerche, M., and Wijewarnasuriya, P. J., J. Crystal Growth 79, 940 (1986).Google Scholar
13.Sivananthan, S., Chu, X., Reno, J., and Faurie, J. P., J. Appl. Phys. 60, 1359 (1986).Google Scholar
14.Feldman, R. D., Austin, R. F., Bridenbaugh, P. M., Johnson, A. M., Simpson, W. M., Wilson, B. A., and Bonner, C. E. (unpublished).Google Scholar
15.Sivananthan, S., Chu, X, Boukerche, M., and Faurie, J. P., Appl. Phys. Lett. 47, 1291 (1985).Google Scholar