Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T10:47:34.551Z Has data issue: false hasContentIssue false

A Comparison Between High- and Low-Energy Ion Mixing

Published online by Cambridge University Press:  25 February 2011

Y.-T. Cheng
Affiliation:
General Motors Research Laboratories, Warren, MI 48090–9055.
E.-H. Cirlin
Affiliation:
Hughes Research Laboratories, Malibu, CA 90265.
B. M. Clemens
Affiliation:
General Motors Research Laboratories, Warren, MI 48090–9055.
A. A. Dow
Affiliation:
General Motors Research Laboratories, Warren, MI 48090–9055.
Get access

Extract

Diffusion in a thermal spike is shown to be the dominant mechanism for both high- and low-energy ion mixing. The similarity between high- and low-energy ion mixing is the result of the fractal nature of collision cascades.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Paine, B. M. and Averback, R. S., Nucl. Instrum. Methods B7/8, 666 (1985).CrossRefGoogle Scholar
2. Lindhard, J., Scharff, M., and Schiott, H. E., Mat. Fys. Medd. Dan. Vid. Selsk. 33, 14 (1963).Google Scholar
3. Winterbon, K. B., Sigmund, P., and Sanders, J. B., Mat. Fys. Medd. Dan. Vid. Selsk. 37, 1 (1970).Google Scholar
4. Anderson, H. H., Appl. Phys. 18, 131 (1979).CrossRefGoogle Scholar
5. Littmark, U. and Hofer, W. O., Nucl. Instrum. Methods 168, 329 (1980).CrossRefGoogle Scholar
6. Sigmund, P. and Gras-Marti, A., Nucl. Instrum. Methods 182/183, 25 (1981).CrossRefGoogle Scholar
7. Matteson, S., Appl. Phys. Lett. 39, 288 (1981).CrossRefGoogle Scholar
8. Wang, Z. L., Westendrop, J. F. M., and Saris, F. W., Nucl. Instrum. Methods 209/210, 115 (1983).CrossRefGoogle Scholar
9. King, B. V., Puranik, S. G., and Macdonald, R. J., Nucl. Instrum. Methods B33, 657 (1988).CrossRefGoogle Scholar
10. Cheng, Y.-T., Workman, T. W., Nicolet, M-A., and Johnson, W. L., Mat. Res. Soc. Symp. Proc. Vol.74, 419 (1987).CrossRefGoogle Scholar
11. Johnson, W. L., Cheng, Y.-T., Rossum, M. Van, and Nicolet, M-A., Nucl. Instrum. Methods B 7/8, 657 (1985).CrossRefGoogle Scholar
12. Rossum, M. Van and Cheng, Y.-T., Diffusion and Defect Data 57–58, 1 (1988).CrossRefGoogle Scholar
13. Cheng, Y.-T., Rossum, M. Van, Nicolet, M-A., and Johnson, W. L., Appl. Phys. Lett. 45,185 (1984).CrossRefGoogle Scholar
14. Workman, T. W., Cheng, Y.-T., Johnson, W. L., and Nicolet, M-A., Appl. Phys. Lett. 50, 1485 (1987).CrossRefGoogle Scholar
15. Miedema, A. R., Philips Tech. Rev. 46, 217 (1976).Google Scholar
16. Vineyard, G. H., Rad. Effects 19, 245 (1976).CrossRefGoogle Scholar
17. Darken, L. S., Trans. AIME 175, 184 (1948).Google Scholar
18. Westendorp, J. F. M., Saris, F. W., Koek, B., Viegers, M. P. A., and Fenn-Tye, I., Nucl. Instrum. Methods B26, 539 (1987).CrossRefGoogle Scholar
19. d'Heurle, F., Baglin, J. E. E., and Clark, G. J., J. Appl. Phys. 57, 1427 (1985).Google Scholar
20. Bhattacharya, R. S. and Rai, A. K., J. Appl. Phys. 58, 248 (1985).CrossRefGoogle Scholar
21. Rai, A. K., Bhattacharya, R. S., Rashid, M. H., and Cormick, A. W. Mc, Mat. Res. Soc. Symp. Proc. 54, 231 (1986).CrossRefGoogle Scholar
22. Rimini, E., Nastasi, M., Liu, J., Barbour, J. C., Hirvonen, J-P., and Mayer, J. W., Appl. Phys. Lett. 48, 303 (1986).CrossRefGoogle Scholar
23. Srinivasan, V. and Bhattacharya, R. S., Surf. Interface Anal. 10, 131 (1987).CrossRefGoogle Scholar
24. Farlow, G. C., Appleton, B. R., Boatner, L. A., McHargue, C. J., White, C. W., Clark, G. J., and Baglin, J. E. E., Mat. Res. Soc. Symp. Proc. 45, 137 (1985).CrossRefGoogle Scholar
25. Hirvonen, J. P., Nastasi, M., and Mayer, J. W., Nucl. Instrum. Methods B13, 479 (1986).CrossRefGoogle Scholar
26. Nastasi, M., Hirvonen, J-P., Caro, M., Rimini, E., and Mayer, J. W., Appl. Phys. Lett. 50, 177 (1987).CrossRefGoogle Scholar
27. Bhattacharya, R. S., Rai, A. K., and Pronko, P. P., J. Appl. Phys. 61, 5263 (1987).CrossRefGoogle Scholar
28. Kim, S-J., Nicolet, M-A., Averback, R. S., and Peak, D., Phys. Rev. B 37 38 (1988).CrossRefGoogle Scholar
29. Cheng, Y.-T., Dow, A. A., and Clemens, B. M., Appl. Phys. Lett. 53, 1346 (1988).CrossRefGoogle Scholar
30. Cheng, Y.-T., Dow, A. A., Clemens, B. M., and Cirlin, E.-H., J. Vac. Sci. Tech., in press.Google Scholar
31. Cirlin, E.-H., Cheng, Y.-T., Clemens, B. M., and Ireland, P., J. Vac. Sci. Tech., to be published.Google Scholar
32. Cheng, Y.-T., Nicolet, M-A., and Johnson, W. L., Phys. Rev. Lett. 58, 2083 (1988).CrossRefGoogle Scholar
33. Cheng, Y.-T., in “NATO Advanced Study Institute Programme, Materials Modification by High-Fluence Ion Beams,” edited by Kelly, R. and Silva, M. da (Cluwer, Dordrecht, 1988), p. 191.Google Scholar
34. Winterbon, K. B., Urbassek, H. M., Sigmund, P., and Gras-Marti, A., Phys. Scripta 36, 689 (1987).CrossRefGoogle Scholar
35. Cheng, Y.-T., unpublished results.Google Scholar
36. Averback, R. S., private communications.Google Scholar