Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T01:16:03.370Z Has data issue: false hasContentIssue false

Comparison between Adsorption in Pores of a Simple Geometry and Realistic Models of Porous Materials

Published online by Cambridge University Press:  01 February 2011

B. Coasne
Affiliation:
Department of Chemical Engineering, North Carolina State University, 113 Riddick Labs, Raleigh, North Carolina 27695–7905, USA.
J. P. Pikunic
Affiliation:
Department of Chemical Engineering, North Carolina State University, 113 Riddick Labs, Raleigh, North Carolina 27695–7905, USA.
R. J. -M. Pellenq*
Affiliation:
Centre de Recherches en Matière Condensée et Nanosciences, CNRS, Campus de Luminy, 13288 Marseille cedex 09, France.
K. E. Gubbins
Affiliation:
Department of Chemical Engineering, North Carolina State University, 113 Riddick Labs, Raleigh, North Carolina 27695–7905, USA.
Get access

Abstract

We study, by means of Grand Canonical Monte Carlo simulations, the effect of disorder in pore morphology and topology on adsorption of simple fluids at 77 K. We consider the case of microporous carbons and mesoporous silicas. For both systems, we found that morphological and topological disorder affects the adsorption isotherm. Consequently, we show that complex porous networks cannot be modeled as a collection of unconnected pores of simple geometry. In the case of microporous carbons, the isosteric heat of adsorption for disordered systems differs significantly from that obtained for an assembly of unconnected slit pores. In contrast, the isosteric heat of adsorption for the disordered mesoporous silica sample compares reasonably well with that observed for a silica material having regular cylindrical pores.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

&

Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK

References

1. Gelb, L. D., Gubbins, K. E., Radhakrishnan, R., and Sliwinska-Bartkowiak, M., Rev. Prog. Phys. 62, 1573 (1999).Google Scholar
2. Berenguer-Murcia, A., Garcia-Martinez, J., Cazorla-Amoros, D., Martinez-Alonso, A., Tascon, J. M. D. and Linares-Solano, A., Studies in Surface Science and Catalysis, Vol. 144, (Rodriguez-Reinoso, F., , F.; McEnaney, B.; Rouquerol, J.; Unger, K. K.; Eds.) Elsevier Science, 8390 (2002).Google Scholar
3. Pikunic, J., Clinard, C., Cohaut, N., Gubbins, K. E., Guet, J. M., Pellenq, R. J. M., Rannou, I., and Rouzaud, J. N., Langmuir 19, 8565 (2003).Google Scholar
4. Pellenq, R. J. M. and Levitz, P. E., Mol. Phys. 100, 2059 (2002).Google Scholar
5. Thomson, K. T. and Gubbins, K. E., Langmuir 16, 5761 (2000).Google Scholar
6. Steele, W. A., Surf. Sci. 36, 317 (1973).Google Scholar
7. Pellenq, R. J. -M. and Nicholson, D., J. Phys. Chem. 98, 13339 (1994).Google Scholar
8. Rouquerol, F., Rouquerol, J. and Sing, K. S. W., “Adsorption by Powders and Porous Solids“, Academic Press, London (1999).Google Scholar
9. Coasne, B. and Pellenq, R. J. -M., J. Chem. Phys., in press (2003).Google Scholar
10. Neimark, A. V., Ravikovitch, P. I., Grün, M., Schüth, F., Unger, K. K., J. Coll. and Interface Sci. 207, 159 (1998).Google Scholar