Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T01:57:17.486Z Has data issue: false hasContentIssue false

Comparing the Structure and Behavior of Point Defects in Silicon Oxynitride Gate Dielectrics formed by NH3-Nitridation and N2O-Growth/Nitridation

Published online by Cambridge University Press:  22 February 2011

J. T. Yount
Affiliation:
Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802
P. M. Lenahan
Affiliation:
Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802
N. S. Saks
Affiliation:
Naval Research Laboratory, Washington, DC 20375
G. A. Brown
Affiliation:
Texas instruments, Dallas, TX 75265
Get access

Abstract

In this work, an electron spin resonance study of NH3-nitrided, N2O-nitrided, and N2O-grown oxides yields information relating the process history, point defect structure, and electrical behavior. NH3-nitridation is responsible for the introduction of bridging nitrogen centers, high capture cross section neutral electron traps, while N2O-processed dielectrics never exhibit these defects. In addition, structural changes at the interface due to nitridation result in observable differences in the interfacial defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Hwang, H., Ting, W., Kwong, D. L., and Lee, J., IEEE IEDM Tech. Dig. 1990, 421.Google Scholar
2 Uchiyama, A., Fukuda, H., Hayashi, T., Iwabuchi, T., and Ohno, S., IEEE IEDM Tech. Dig. 1990, 425.Google Scholar
3 Cable, J. S., Mann, R. A., and Woo, J. C. S., IEEE Electron Dev. Lett. 12, 128 (1991).Google Scholar
4 Yang, W., Jayaraman, R., and Sodini, C. G., IEEE Trans. Electron Dev. 35, 935 (1988).Google Scholar
5 Momose, H. S., Kitagawa, S., Yamabe, K., and Iwai, H., IEEE IEDM Tech. Dig. 1989, 267.Google Scholar
6 Dunn, G. J. and Scott, S. A., IEEE Trans. Electron Dev. 37, 1719 (1990).Google Scholar
7 Lo, G. Q., Ahn, J., and Kwong, D. L., IEEE Electron Dev. Lett. 13, 341 (1992).Google Scholar
8 Ahn, J.. Joshi, A., LO, G. Q., and Kwong, D. L., IEEE Electron Dev. Lett. 13, 513 (1992).Google Scholar
9 Terry, F. L. Jr, Aucoin, R. J., Naiman, M. L., and Senturia, S. D., IEEE Electron Dev. Lett. 4, 191 (1983).Google Scholar
10 Dunn, G. J., Appl. Phys. Lett. 53, 1650 (1988).Google Scholar
11 Dunn, G. J. and Wyatt, P. W., IEEE Trans. Nucl. Sci. 36, 2161 (1989).Google Scholar
12 Hwang, H., Ting, W., Maiti, B., Kwong, D. L., and Lee, J., Appl. Phys. Lett. 57, 1010 (1990).Google Scholar
13 Yankova, A., Thanh, L. Do, and Balk, P., Solid-St. Electron. 30, 939 (1987).Google Scholar
14 Hori, T., Iwasaki, H., and Tsuji, K., IEEE Trans. Electron Dev. 36, 340 (1989).Google Scholar
15 Chang, S. T., Johnson, N. M., and Lyon, S. A., Appl. Phys. Lett. 44, 316, (1984).Google Scholar
16 Yasuda, M., Fukuda, H., Iwabuchi, T., and Ohno, S., Jap. J. Appl. Phys. 30, 3597 (1991).Google Scholar
17 Fukuda, H., Arakawa, T., and Ohno, S., Jap. J. Appl. Phys. 29, L2333 (1990).Google Scholar
18 Liu, Z., Wann, H. J., Ko, P. K., Hu, C., and Cheng, Y. C., IEEE Electron Dev. Lett. 13, 519 (1992).Google Scholar
19 Carr, E. C. and Buhrman, R. A., Appl. Phys. Lett. 63, 54 (1993).Google Scholar
20 Dunn, G. J., Jayaraman, R., Yang, W., and Sodini, C. G., Appl. Phys. Lett. 52, 1713 (1988).Google Scholar
21 Hori, T. and Iwasaki, H., IEEE Electron Dev. Lett. 9, 168 (1988).Google Scholar
22 Chaiyasena, I. A., Leneahan, P. M., and Dunn, G. J., Appl Phys. Lett. 58, 2141 (1991).Google Scholar
23 Chaiyasena, I. A., Lenahan, P. M., and Dunn, G. J., J. Appl. Phys. 72, 1 (1992).Google Scholar
24 Yount, J. T., Lenahan, P. M., and Dunn, G. J., IEEE Trans. Nucl. Sci. 39, 2211 (1992).Google Scholar
25 Yount, J. T., Lenahan, P. M., and Wyatt, P. W., J. Appl. Phys. 74, 5867 (1993).Google Scholar
26 Yount, J. T. and P. Lenahan, M., J. Non-Cryst. Solids, 164–166, 1069 (1993).Google Scholar
27 Nishi, Y., Tanaka, T., and Ohwada, A., J. Appl. Phys. 11, 85 (1972).Google Scholar
28 Caplan, P. J., Poindexter, E. H., Deal, B. E., and Razouk, R. R., J. Appl. Phys. 50, 5847 (1979).Google Scholar
29 Lenahan, p. M. and Dressendorfer, P. V., Appl. Phys. Lett. 41, 542 (1982).Google Scholar
30 Warren, W. L., Lenahan, P. M., and Curry, S. E., Phys. Rev. Lett. 65, 207 (1990).Google Scholar
31 Lenahan, P. M. and Curry, S. E., Appl. Phys. Lett. 56, 157 (1990).Google Scholar
32 Warren, W. L. and Lenahan, P. M., Phys. Rev. B 42, 1773 (1990).Google Scholar
33 Silsbee, R. H., J. Appl. Phys. 32, 1459 (1961).Google Scholar
34 Feigl, F. J., Fowler, W. B., and Yip, K. L., Solid State Commun. 14, 225 (1974).Google Scholar
35 Lenahan, P. M. and Dressendorfer, P. V., J. Appl. Phys. 55, 3495 (1984).Google Scholar
36 Lai, S. K., Lee, J., and Dham, V. K., IEEE IEDM Tech. Dig. 1983, 190.Google Scholar
37 Mackey, J. H., Boss, J. W., and Kopp, M., Phys. Chem. Glass II, 205 (1970).Google Scholar
38 Brower, K. L., Phys. Rev. Lett. 44, 1627 (1980).Google Scholar
39 Krick, J. T., Lenahan, P. M., and Dunn, G. J., Appl. Phys. Lett. 59, 3437 (1991).Google Scholar
40 Gabrys, j. W., Lenahan, P. M., and Weber, W., Microelectronics 22, 273 (1993).Google Scholar
41 Momose, H. S., Morimoto, T., Yamabe, K., and Iwai, H., IEEE IEDM Tech. Dig. 1990, 65.Google Scholar
42 Yount, J. T., Lenahan, P. M., and Wyatt, P. W., J. Appl. Phys. 74, 5867 (1993).Google Scholar
43 Redondo, A., Goddard, W. A. III, McGill, T. C., and Surratt, G. T., Solid State Commun. 20, 733 (1976).Google Scholar
44 Gerardi, G. J., Poindexter, E. H., Caplan, P. J., and Johnson, N. M., Appl. Phys. Lett. 49, 348 (1986).Google Scholar