Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T15:23:47.582Z Has data issue: false hasContentIssue false

Comparing the Role of Dislocations during Plastic Deformation of Nanocrystalline Nickel and Coarse-Grained Nickel during Cold Rolling

Published online by Cambridge University Press:  01 February 2011

Andreas Kulovits
Affiliation:
[email protected], University of Pittsburgh, Department of Mechanical Engineering and Materials Science, 848 Benedum Hall, 3700 O Hara Street, Pittsburgh, PA, 15261, United States, 412-624-9750
Scott M Mao
Affiliation:
[email protected], University of Pittsburgh, Department of Mechanical Engineering and Materials Science, 848 Benedum Hall, 3700 O Hara Street, Pittsburgh, PA, 15261, United States
Jorg M Wiezorek
Affiliation:
[email protected], University of Pittsburgh, Department of Mechanical Engineering and Materials Science, 848 Benedum Hall, 3700 O Hara Street, Pittsburgh, PA, 15261, United States
Get access

Abstract

We investigated plastic deformation of fully dense electrodeposited nanocrystalline (NC) Ni with an average grain size of 30-40nm. We studied the microstructural evolution during cold rolling of NC Ni to a reduction in thickness up to 76% (true strain equivalent ∼1.42). We determined changes in texture, grain morphology, grain boundary character and grain sizes as a function of cold rolling strain, using X-ray diffraction and transmission electron microscopy TEM. We compared our results of the NC Ni with our own results for cold rolled coarse grained (CG) Ni. Differences and similarities in deformation behavior are discussed with respect to well documented findings in the literature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kumar, K.S. Swygenhoven, H. Van, Suresh, S.: Acta mater. (2003) 51, p. 5743.Google Scholar
2. Fan, G.J., Choo, H., Liaw, P.K., Lavernia, E. J.: Mater. Sci. Eng. A (2005) 409, p. 243.Google Scholar
3. , Brandstetter, Zhang, Kai, Escuadro, A., Weertman, J.R. and Swygenhoven, H. Van: Scripta Materialia 58 (2008) 61.Google Scholar
4. Carlton, C.E. Ferreira, P.J.: Acta mater. (2007) 55 p.3749.Google Scholar
5. Meyers, M.A. Mishra, A., Benson, D.J.: Progress in Materials Science (2006) 51, p. 427.Google Scholar
6. Liao, X. Z., Shrinivasan, S. G., Zhao, Y.H., Baskes, M.I., Zhu, Y.T., Zhou, F. et al.: Appl. Phys. Letters (2004) 84, p. 3654.Google Scholar
7. Nieh, T.J., Wadsworth, J.: Scripta metall. mater. (1991) 25, p. 955.Google Scholar
8. Weertman, J. and Weertman, J.R.: Elementary Dislocation Theory; Oxford University Press; New York, Oxford; (1992) p. 123.Google Scholar
9. Pande, C.S., Masumura, R. A., Armstrong, R. W.: Nanostruct. Mater. (1993) 2, p. 323.Google Scholar
10. Meyers, M. A., Mishra, A., Benson, D. J.: JOM (2006) 4 p. 41.Google Scholar
11. Bergenstof, N. C., Horsewell, A., éstergård, M. J. L.: Journal of Applied Electrochemistry (1997) 27, Issue 7, p. 839.Google Scholar
12. Marquis, E.A., Talin, A. A., Kelly, J. J., Goods, S. H., Michael, J. R.: Journal of Applied Electrochemistry (2006) 36, Issue 6, p. 669.Google Scholar
13. Wenk, H-R, Houtte, P Van: Reports on Progress in Physics (2004) 67 p. 1367.Google Scholar
14. Ray, R.K.: Acta metall. mater. (1995) 43, p. 3861.Google Scholar
15. Wilsdorf, D. Kuhlmann: Phil. Mag. A (1999) 79, No. 4 p. 95.Google Scholar
16. Gianola, D.S., Petegem, S. Van, Legros, M., Brandstetter, S., Swygenhofen, H. van, Hemker, K. J.: Acta mater. (2006) 54, p. 225.Google Scholar