Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-17T15:23:41.057Z Has data issue: false hasContentIssue false

A Comparative Study of the Influence of the Local Density Approximation and the Generalized Gradient Approximation on the Calculated Properties of the III-Nitride (110) Surfaces

Published online by Cambridge University Press:  17 March 2011

H. W. Leite Alves
Affiliation:
DCNAT-FUNREI, CP 110, 36.300-000, São João del –Rei MG, Brazil
J. L. A. Alves
Affiliation:
DCNAT-FUNREI, CP 110, 36.300-000, São João del –Rei MG, Brazil
R. A. Nogueira
Affiliation:
DF-ICEx-UFMG, CP 702, 30.161-970, Belo Horizonte MG, Brazil
J. R. Leite
Affiliation:
DFMM-IF-USP, CP 66.318, 05.389-970, São Paulo SP, Brazil
Get access

Abstract

We present a systematic theoretical study of several III-nitride (110) surfaces based on accurate parameter-free, self-consistent total energy and force calculations using the density functional theory, the local density approximation (LDA), as parametrized by Perdew and Zunger, and the generalized gradient approximation (GGA), as proposed by Perdew, Burke, and Ernzerhof, for the exchange-correlation term; we use the Full Potential Linear Augmented Plane Wave (FPLAPW) approach (WIEN-97 code) associated with the slab supercell model to simulate the (110) surface. We studied BN, AlN, GaN, InN and compared the theoretical results as related to the use of the LDA and the GGA. We conclude that although the results for both approximations are similar, differences in structural parameters may be as large as 10%.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.a) Jafè, J. E., Pandey, R., Zapol, P., Phys. Rev. B53, 4209 (1996); b) X. Chen, J.-M. Langlois and W. A. Goddard III, Phys. Rev. B52, 2348 (1995); c) R. Pandey, P. Zapol and M. Causa, Phys. Rev. B55, R16009 (1997); d) J. E. Northrup and J. Neugebauer, Phys. Rev. B53, R10477 (1996); e) A. Filippetti, V. Fiorentini, G. Cappellini, A. Bosin, Phys. Rev. B59, 8026 (1999); f) U. Grossner, J. Furthmüller and F. Bechstedt, Phys. Rev. B58, R1722 (1998); g) H. W. Leite Alves, J. L. A. Alves, J. L. F. da Silva, J. R. Leite, R. A. Nogueira. Mater. Sci. Eng. B59, 258 (1999).Google Scholar
2. Alves, H. W. Leite, Alves, J. L. A., Nogueira, R. A. and Leite, J. R., Braz. J. Phys. 29, 817 (1999).Google Scholar
3. Langreth, D. C. and Mehl, M. J., Phys. Rev. B28 1809 (1983).Google Scholar
4. Becke, A. D., Phys. Rev. A38, 3098 (1988); J. P. Perdew, Phys. Rev. B33, 8822 (1986).Google Scholar
5. Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J., and Fiolhais, C., Phys. Rev. B46, 6671 (1992).Google Scholar
6. Hohenberg, P. and Kohn, W., Phys. Rev. 136 B864 (1964).Google Scholar
7. Kohn, W. and Sham, L. J., Phys. Rev. 140, A1133 (1965).Google Scholar
8. Corso, A. Dal, Pasquarello, A., Baldereschi, A., Car, R., Phys. Rev. B53, 1180 (1996), and references therein.Google Scholar
9. Walle, A. van de and Ceder, G., Phys. Rev. B59, 14992 (1999) and references therein.Google Scholar
10. Fuchs, M., Bockstedte, M., Pehlke, E., and Scheffler, M.. Phys Rev. B57, 2134 (1998).Google Scholar
11. Miotto, R., Srivastava, G. P., Ferraz, A. C.. Surf. Science 433–435, 377 (1999); R. Miotto, G. P. Srivastava, A. C. Ferraz, Phys. Rev. B58, 7944 (1998).Google Scholar
12. Perdew, J. P. and Zunger, A., Phys. Rev. B23, 5048 (1981).Google Scholar
13. Perdew, J. P., Burke, K., and Enzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
14. Blaha, P., Schwartz, K., and Luitz, J., WIEN 97, A Full Potential Linearized Augmented Plane wave Package for Calculating Crystal Properties (Techn. Universitä t Wien, Austria, 1999).Google Scholar
15. Alves, J. L. A., Hebenstreit, J., and Scheffler, M.. Phys. Rev. B44, 6188 (1991).Google Scholar
16. Kellen, S. Bei der, Freeman, A. J., Phys. Rev. B54, 11187 (1996).Google Scholar
17. Vogel, D., Kruger, P., Pollmann, J., Phys. Rev. B55, 12836 (1997); C. Stampfl, C. G. Van de Walle, Phys. Rev. B59, 5521(1999).Google Scholar
18. Miotto, R., Ferraz, A. C., Srivastava, G. P.. Solid State Commun. 115, 67 (2000). The authors performed pseudopotential calculations using GGA plus the non-linear core corrections, introduced by S. G. Louie, S. Froyen, and M. L. Cohen (Phys. Rev. B26, 1738 (1982)). The approach introduced by Louie et al. is essential to avoid systematic errors in the pseudo-potential framework, when the core and valence charge densities do overlap. Unexpectedly, Miotto et al. obtain a large positive value for the energy gap of InN (see Fig. 3 of their paper).Google Scholar