Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T04:14:42.908Z Has data issue: false hasContentIssue false

A Comparative Study of Ionic Association in Poly(Ethylene Oxide)- MCF3SO3 Systems (M=Lithium and Sodium)

Published online by Cambridge University Press:  10 February 2011

Roger Frech
Affiliation:
Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, [email protected]
Christopher P. Rhodes
Affiliation:
Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
Shawna S. York
Affiliation:
Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
Get access

Abstract

A comparative infrared spectroscopic study of the local vibrational potential energy environment of the CF3SO3 (triflate) anion in the poly(ethylene oxide)-lithium triflate and poly(ethylene oxide)-sodium triflate systems is presented. Analysis of the crystalline stoichiometric compounds in the two systems identifies significant differences in the ionic association. Comparison of the relative percentages of the anionic species in the PEO-NaTf system at various concentrations suggests that crystalline compound formation may proceed through intermediate structures. A symmetry-based vibrational analysis is applied to the crystalline compounds.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Berthier, C., Gorecki, W. and Minier, M., Solid State Ionics 11, 91 (1983).Google Scholar
2. Stainer, M., Hardy, L. C., Whitmore, D. H. and Shriver, D. F., J. Electrochem. Soc. 131, 784 (1984).Google Scholar
3. Robitaille, C. D. and Fauteux, D., J. Electrochem. Soc. 133, 315 (1986).Google Scholar
4. Besner, S., Vallie, A., Bouchard, G. and Prud'homme, J., Macromolecules 25, 6480 (1992).Google Scholar
5. Minier, M., Berthier, C. and Gorecki, W., J. Physique 45, 739 (1984).Google Scholar
6. Lightfoot, P., Mehta, M. A. and Bruce, P. G., Science 262, 883 (1993).Google Scholar
7. Andreev, Y. G., MacGlashan, G. S. and Bruce, P. G., Phys. Rev. B 55, 12011 (1997).Google Scholar
8. Frech, R., Chintapalli, S., Bruce, P. G. and Vincent, C. A., Chem. Commun., 157 (1997).Google Scholar
9. Bernson, A., Lindgen, J., Huang, W. and Frech, R., Polymer 36, 4471 (1995).Google Scholar
10. Huang, W., Frech, R. and Wheeler, R. A., J. Phys. Chem. 98, 100 (1994).Google Scholar
11. Frech, R., Huang, W. and Dissanayake, M. A. K. L., Mat. Res. Soc. Symp. Proc. 369, 523 (1995).Google Scholar
12. Frech, R., Chintapalli, S., Bruce, P. G. and Vincent, C. A., Macromolecules (in press).Google Scholar
13. Chintapalli, S. and Frech, R., Electrochimica Acta 43, 1395 (1998).Google Scholar
14. Yang, L., Zhang, A., Qiu, B., Yin, J. and Liu, Q., Solid State Ionics 28–30, 1029 (1988).Google Scholar
15. Huang, W., Wheeler, R. A. and Frech, R., Spectrochimica Acta 50A, 985 (1994).Google Scholar
16. Gejji, S. P., Hermansson, K., Tegenfeldt, J. and Lindgren, J., J. Phys. Chem. 97, 11402 (1993).Google Scholar
17. Gejji, S. P., Hermansson, K. and Lindgren, J., J. Phys. Chem. 97, 3712 (1993).Google Scholar
18. Matsuura, H. and Fukuhara, K., J. Polymer. Sci. B 24, 1383 (1986).Google Scholar
19. Yoshihara, T., Tadokoro, H. and Murahashi, S., J. Chem. Phys. 41, 2902 (1964).Google Scholar
20. Rhodes, C. P. and Frech, R. E., Solid State Ionics (in press).Google Scholar
21. Fately, W. G., Dollish, F. R., McDevitt, N. T. and Bentley, F. F., Infrared and Raman Selection Rules for Molecular and Lattice Vibrations: The Correlation Method (John Wiley & Sons, Inc., New York, 1972), p.135.Google Scholar
22. Tadokoro, H., J. Chem. Phys. 33, 1558 (1960).Google Scholar