Article contents
Comparative Optical Studies of Chemically Synthesized Silicon Nanocrystals
Published online by Cambridge University Press: 15 February 2011
Abstract
We studied the optical and electronic properties of silicon nanocrystals derived from two distinct fabrication procedures. One technique uses a controlled chemical reaction. In the other case, silicon nanocrystals are produced by ultrasonic fracturing of porous silicon layers. We report on the photoluminescence, photoluminescence excitation, and absorption spectroscopy of various size distributions derived from these techniques. We compare the different optical properties of silicon nanocrystals made this way and contrast them with that observed in porous silicon. Our results emphasize the dominant role of surface states in these systems as manifested by the different surface passivation layers present in these different fabrication techniques. Experimental absorption measurements are compared to theoretical calculations with good agreement. Our results provide compelling evidence for quantum confinement in both types of Si nanocrystals. Our results also indicate that the blue emission from very small Si nanocrystals corresponds to the bandedge emission, while the red emission arises from traps.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1997
References
REFERENCES
- 4
- Cited by