Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-08T21:57:17.022Z Has data issue: false hasContentIssue false

Combined Optical, Structural and Theoretical Assessment of MOCVD Grown Multiple GaAs Quantum Wells

Published online by Cambridge University Press:  21 February 2011

Z. C. Feng
Affiliation:
Department of Physics, National University of Singapore, S0511, SINGAPORE
J. Cen
Affiliation:
Department of Physics, Emory University, Atlanta, GA 30322
K. K. Bajaj
Affiliation:
Department of Physics, Emory University, Atlanta, GA 30322
R. L. Messham
Affiliation:
Westinghouse Science and Technology Center, Pittsburgh, PA 15235
L. L. Clemen
Affiliation:
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260
M. Yoganathan
Affiliation:
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260
W. J. Choyke
Affiliation:
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260
Get access

Abstract

A combined characterization of theoretical calculation and experimental measurements, including Raman scattering, photoluminescence and cross sectional transmission electron microscopy, has been made on GaAs-AlxGa1-xAs multiple quantum wells (MQW) structures with different well widths grown by metalorganic chemical vapor epitaxy (MOCVD) with a modified reactor. Various parameters of these MQWs are obtained. The results with and without the alkyl push flow are compared. Related physical phenomena are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Messham, R. L., Westinghouse Corporation, internai report, 1989.Google Scholar
2 Feng, Z. C., Perkowitz, P., Kinell, D. K. and Whitney, R. L., Phys. Rev. B47, 13466 (1993)Google Scholar
3 Bertolet, D. C., Hsu, J. K. and Lau, K. M., J. Appl. Phys. 62, 120 (1987).Google Scholar
4 Rao, E. V. K., Alexandre, F., Masson, J. M., Allovon, M. and Goldstein, L., J. Appl. Phys. 57,503(1985).Google Scholar
5 Greene, R. L. and Bajaj, K. K., Solid State Commun. 45, 831 (1983).Google Scholar
6 Hayakawa, T., Suyama, T., Takahashi, K., Kondo, M., Yamamoto, S., Yano, S. and Hijikata, T., Appl. Phys. Lett. 47, 952 (1985).Google Scholar
7 Bosio, C., Staehli, J. L., Guzzi, M., Burri, G. and Logan, R. A., Phys. Rev. B38, 3263(1988).Google Scholar
8 Adachi, A., J. Appl. Phys. 58, R1 (1985).Google Scholar
9 Reynolds, D. C., Bajaj, K. K., Litton, C. W., Yu, P. W., Singh, J., Masselink, W. T., Fisher, R. and Morkoc, H., Appl. Phys. Lett. 46, 51 (1985).Google Scholar