Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T07:37:53.695Z Has data issue: false hasContentIssue false

Combined MOCVD and MBE growth of GaN on porous SiC

Published online by Cambridge University Press:  01 February 2011

Ashutosh Sagar
Affiliation:
Dept. of Physics, Carnegie Mellon University, Pittsburgh, PA 15213
R. M. Feenstra
Affiliation:
Dept. of Physics, Carnegie Mellon University, Pittsburgh, PA 15213
C. K. Inoki
Affiliation:
Dept. of Physics, University at Albany, SUNY, Albany, NY 12222
T. S. Kuan
Affiliation:
Dept. of Physics, University at Albany, SUNY, Albany, NY 12222
D. D. Koleske
Affiliation:
Chemical Processing Science Dept., Sandia National Lab., Albuquerque, NM 87185
Get access

Abstract

GaN films have been grown homoepitaxially by MOCVD on MBE-grown GaN template layers, using both porous and nonporous SiC substrates. The effect of the porous SiC substrates on dislocations in the MBE and MOCVD GaN layers has been studied using TEM and x-ray characterization. A reduction in dislocation density from ≥1×1010 cm-2 in the MBE template to 2.5×109 cm-2 at the top of the MOCVD film is found, with similar final values in the MOCVD films for both porous and nonporous substrates. We discuss various mechanisms by which dislocation density is reduced in the MOCVD layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Saddow, S. E., Mynbaeva, M., Choyke, W. J., Bai, S., Melnychuk, G., Koshka, Y., Dmitriev, V. and Wood, C. E. C., Mat. Sci. Forum 353–356, 115 (2001).Google Scholar
2. Mynbaeva, M., Titkov, A., Kryzhanovski, A., Ratnikov, V., Huhtinen, H., Laiho, R. and Dmitriev, V., Appl. Phys. Lett. 76, 1113 (2000).Google Scholar
3. Mynbaeva, M. et al., MRS Internet J. Nitride Semicond. Res. 4, 14 (1999).Google Scholar
4. Mynbaeva, M. et al., Mat. Res. Soc. Symp. vol. 595, W2.7.1 (2000).Google Scholar
5. Melnychuck, G., Mynbaeva, M., Rendakova, S., Dmitriev, V. and Saddow, S. E., Mat. Res. Soc. Symp. vol. 622, T 4.2.1 (2000).Google Scholar
6. Li, X., Kim, Y.-W., Bohm, P. W., Adesida, I., Appl. Phys. Lett. 80, 980 (2002).Google Scholar
7. Sagar, A., Lee, C. D., Feenstra, R. M., Inoki, C. K. and Kuan, T. S., J. Vac. Sci. Technol. B 21, 1812 (2003).Google Scholar
8. Sagar, A., Lee, C. D., Feenstra, R. M., Inoki, C. K. and Kuan, T. S., J Appl. Phys. 92, 4070 (2002).Google Scholar
9. Lee, C. D., Sagar, A., Feenstra, R. M., Inoko, C. K., Kuan, T. S., Sarney, W. L., and Salamanca-Riba, L., Appl. Phys. Lett. 79, 3428 (2001).Google Scholar
10. Skromme, B. J., Zhao, H., Wang, D., Kong, H. S., Leonard, M. T., Bulman, G. E., and Molnar, R. J., Appl. Phys. Lett. 71, 829 (1997).Google Scholar
11. Kästner, G. and Gösel, U., Appl. Phys. Lett. 82, 3209 (2003).Google Scholar