Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T02:12:19.590Z Has data issue: false hasContentIssue false

Combined AFM-SEM testing for mechanical property determination of graphene oxide paper

Published online by Cambridge University Press:  21 February 2012

Congwei Wang
Affiliation:
Department of Materials, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, U.K.
Asa H. Barber
Affiliation:
Department of Materials, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, U.K.
Get access

Abstract

A novel technique combining both atomic force microscopy (AFM) and scanning electron microscopy (SEM) is used to test the mechanical properties of densely-packed graphene oxide (GO) paper. Individual beams of GO paper with variable widths were prepared using focussed ion beam (FIB) microscopy and tensile tested to failure using the AFM while observing with SEM. A variation in the tensile strength of the GO paper beams up to 64.8 MPa was recorded in the vacuum testing condition. An increase in breaking stress of GO paper with decreasing sample width was determined and proposed as being due to fewer defects present in GO beams of smaller width.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A., Science 306, 666, (2004).Google Scholar
2. Geim, A. K. and Novoselov, K. S., Nat. Mater. 6, 183, (2007).Google Scholar
3. Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V., Morozov, S. V., and Geim, A. K., Proc. Natl. Acad. Sci. U.S.A. 102, 10451 (2005).Google Scholar
4. Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamkanni, A., Jung, I., Tutuc, E., Banerjee, S. K., Colombo, L., and Ruoff, R. S., Science 324, 1312 (2009).Google Scholar
5. Park, S. and Ruoff, R. S., Nat. Nanotechnol. 4, 217 (2009).Google Scholar
6. Dikin, D. A., Stankovich, S., Zimney, E. J., Piner, R. D., Dommett, G. H. B., Evmenenko, G., Nguyen, S. T., and Ruoff, R. S., Nature 448, 457 (2007).Google Scholar
7. Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., and Ruoff, R. S., Adv. Mater. 22, 3906 (2010).Google Scholar
8. Ballard, D. G. H. and R Rideal, G., J. Mater. Sci. 18, 545 (1983).Google Scholar
9. Barber, A. H., Andrews, R., Schadler, L. S., and Wagner, H. D., Appl. Phys. Lett. 87, 203106 (2005).Google Scholar
10. Hang, F., Lu, D., Bailey, R.J., Jimenez-Palomar, I., Stachewicz, U., Cortes-Ballesteros, B., Davies, M., Zech, M., Bödefeld, C., and Barber, A.H., Nanotechnology 22, 365708 (2011).Google Scholar
11. Jimenez-Palomar, I., Shipov, A., Shahar, R., and Barber, A.H., J. Mech. Beh. Biomed. Mater. doi:10.1016/j.jmbbm.2011.08.018.Google Scholar
12. Gao, Y., Liu, L. Q., Zu, S. Z., Peng, K., Zhou, D., Han, B. H., and Zhang, Z., ACS Nano 5 2134, (2011).Google Scholar
13. Sader, J. E., Chon, J. W. M., and Mulvaney, P., Rev. Sci. Instrum. 70, 3967 (1999).Google Scholar
14. Griffith, A. A., Phil. Trans. Roy. Soc. 221, 163, (1921).Google Scholar
15. Park, S., Lee, K., Bozoklu, G., Cai, W., Nguyen, S. T., and Ruoff, R. S., ACS Nano 2 527 (2008).Google Scholar