Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-02T19:18:50.895Z Has data issue: false hasContentIssue false

Combinatorial Peptide Libraries for Selecting Inorganic-Binding Proteins: A Step in Molecular Biomimetics

Published online by Cambridge University Press:  15 February 2011

C. Tamerler
Affiliation:
Materials Science & Eng., Chem. Eng., University of Washington, Seattle, WA 98195, USA Molecular Biology & Genetics, Istanbul Technical University, Maslak, 80 626, Istanbul, Turkey
S. Dinçer
Affiliation:
Materials Science & Eng., Chem. Eng., University of Washington, Seattle, WA 98195, USA
D. Heidel
Affiliation:
Molecular Biology & Genetics, Istanbul Technical University, Maslak, 80 626, Istanbul, Turkey
N. Karagûler
Affiliation:
Molecular Biology & Genetics, Istanbul Technical University, Maslak, 80 626, Istanbul, Turkey
M. Sarikaya
Affiliation:
Materials Science & Eng., Chem. Eng., University of Washington, Seattle, WA 98195, USA
Get access

Abstract

Proteins, one of the building blocks in organisms, not only control the assembly in biological systems but also provide most of their complex functions. It may be possible to assemble materials for practical technological applications utilizing the unique advantages provided by proteins. Here we discuss molecular biomimetic pathways in the quest for imitating biology at the molecular scale via protein engineering. We use combinatorial biology protocols to select short polypeptides that have affinity to inorganic materials and use them in assembling novel hybrid materials. We give an overview of some of the recent developments of molecular engineering towards this goal. Inorganic surface specific proteins were identified by using cell surface and phage display technologies. Examples of metal and metal oxide specific polypeptides were represented with an emphasis on certain level of specificities. The recognition and self assembling characteristics of these inorganic-binding proteins would be employed in develeopment of hybrid multifunctional materials for novel bio- and nano-technological applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sarikaya, M. and Aksay, I. A. (eds.) Biomimetics: Design & Processing of Materials (American Institute of Physics, New York, 1995).Google Scholar
2. Niemeyer, C. M., Angew. Chem, 40, 41284158 (2001).Google Scholar
3. Sarikaya, M. et al., Nature Materials, to be published (2003).Google Scholar
4. Ryu, D. D. Y. and Nam, D. H., Biotech. Prog., 16, 216 (2000).Google Scholar
5. Sarikaya, M., Proc. Natl. Acad. Sci. USA. 96,1418314185 (1999).Google Scholar
6. Berman, A., Addadi, L., and Weiner, S., Nature, 331, 546548 (1988).Google Scholar
7. Weizbicki, A., Sikes, C. S., Madura, J. D., and Darke, B., Calcif, B.. Tissue. Intl., 54, 133141 (1994).Google Scholar
8. Cha, J. N., , J. N. et al., Proc. Natl. Acad. Sci. USA., 96, 361365 (1999).Google Scholar
9. Paine, M. L. and Snead, M. L, J. Bone Miner. Research., 12, 221226 (1996).Google Scholar
10. Smith, G. P., and Petrenko, A., Chem. Rev., 97, 391410 (1997).Google Scholar
11. Benhar, I., Biotechnology Advances, 19, 133 (2001).Google Scholar
12. Brown, S., Nature Biotechnology, 15, 269272 (1997).Google Scholar
13. Schembri, M., Kjaergaard, K., and Klemm, P., FEMS Microbiol. Lett., 170, 363371 (1999).Google Scholar
14. Nguyen, C. et al., J. Amer. Chem. Soc., to be published (2003).Google Scholar
15. Wittrup, K. D., Curr. Opinion in Biotechnology, 12, 395–39 (2001).Google Scholar
16. Hoess, R. H., Chem. Rev., 101, 32053218 (2001).Google Scholar
17. Whaley, S. R. et al., Nature, 405, 665668 (2000).Google Scholar
18. Naik, R. R. et al., J. Nanosci. Nanotechnol., 2, 16 (2002); R. R. Naik et al., Nature Mater. 1, 169-172 (2002).Google Scholar
19. Dincer, S. et al., Macromolecules, to be published (2003).Google Scholar
20. Schreiber, R., Prog. Surf. Sci., 65, 151256 (2000).Google Scholar
21. Dincer, S. et al., J. Thin Film and Coatings, to be published (2003).Google Scholar
22. Whitesides, G. M., Mathias, J. P., and Seto, C. T., Science 254, 13121319 (1991).Google Scholar
23. Mrksich, M., Curr. Opin. Chem. Biol., 6, 794797 (2002).Google Scholar