Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T23:15:48.434Z Has data issue: false hasContentIssue false

Combination of Continuum and Atomistic Approaches for the Study of Dislocation Nucleation from Atomic Size Surface Defects

Published online by Cambridge University Press:  21 March 2011

Sandrine Brochard
Affiliation:
Laboratoire de Métallurgie Physique, UMR 6630 du CNRS, Université de Poitiers, UFR Sciences SP2MI, Téléport 2, Bd. Marie et Pierre Curie, B.P. 30179 86962 Futuroscope Chasseneuil Cedex, FRANCE
Pierre Beauchamp
Affiliation:
Laboratoire de Métallurgie Physique, UMR 6630 du CNRS, Université de Poitiers, UFR Sciences SP2MI, Téléport 2, Bd. Marie et Pierre Curie, B.P. 30179 86962 Futuroscope Chasseneuil Cedex, FRANCE
Jean Grilhé
Affiliation:
Laboratoire de Métallurgie Physique, UMR 6630 du CNRS, Université de Poitiers, UFR Sciences SP2MI, Téléport 2, Bd. Marie et Pierre Curie, B.P. 30179 86962 Futuroscope Chasseneuil Cedex, FRANCE
Get access

Abstract

Atomistic simulations realized on an f.c.c. crystal containing atomic size surface defects (step and groove) show that the defects are privileged sites for dislocation nucleation. Before nucleation, an elastic shear, precursor of the dislocation, appears in the plane in zone with the step where the dislocation will be nucleated. In order to explain the strong localization of the localized elastic precursor shear, we have analyzed the stress concentration near the surface defects using the continuum point force approach. For the step case, the origin of the localized shear is related to an increase in the interplanar separation due to the stress concentration.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Vanhellemont, J., Claeys, C., and Landuyt, J. Van, Phys. Status Solidi A 150, 497 (1995).Google Scholar
2. Cullis, A.G., Pidduck, A.J., and Emeny, M.T., J. Cryst. Growth 158, 15 (1996).Google Scholar
3. Kamat, S.V., and Hirth, J.P., J. Appl. Phys. 67, 6844 (1990).Google Scholar
4. Jagannadham, K.J., and Narayan, J., Mater. Sci. Engng. B8, 107 (1991)Google Scholar
5. Gao, H., and J. Mech. Phys. Solids 42, 741 (1994).Google Scholar
6. Beltz, G.E., and Freund, L.B., in Thin Films: Stresses and Mechanical Properties V, edited by Baker, S.P., Ross, C. A., Townsend, P. H., Volkert, C. A., BØrgesen, P., (Mat. Res. Soc. Symp. Proc. N° 356, Pittsburgh, 1995) p. 93.Google Scholar
7. Zou, J., and Cockayne, J.H., J. Appl. Phys. 79, 7632 (1996).Google Scholar
8. Jesson, D.E., Pennycook, S.J., Baribeau, J.M., and Houghton, D.C., Phys. Rev. Lett. 71, 1744 (1993).Google Scholar
9. Grilhé, J., Europhys. Lett. 23, 141 (1993).Google Scholar
10. Dong, L., Schnitker, A.J., Smith, R.W., and Srolovitz, D.J., J. Appl. Phys. 83, 217 (1998).Google Scholar
11. Cheung, K.S., Argon, A.S., and Yip, S., J. Appl. Phys. 69, 2088 (1991)Google Scholar
12. Xu, G., Argon, A.S., and Ortiz, M., Phil. Mag. A 72, 415 (1995)Google Scholar
13. Xu, G., Argon, A.S., and Ortiz, M., Phil. Mag. A 75, 341 (1997)Google Scholar
14. Brochard, S., Beauchamp, P., and Grilhé, J., Phil. Mag. A 80, 503 (2000).Google Scholar
15. Aslanides, A., and Pontikis, V., Computational Materials Science 10, 401 (1998).Google Scholar
16. Rice, J.R., J. Mech. Phys. Solids 40, 239 (1992).Google Scholar
17. Brochard, S., Beauchamp, P., and Grilhé, J., to be published in Mat. Sci. and Eng. A Google Scholar
18. Boussinesq, J., Application des potentiels á l'étude de l'équilibre et du mouvement des solides élastiques (Gauthier-Villars, Paris, 1885), p. 187.Google Scholar
19. Timoshenko, S., and Goodier, J.N., Theory of Elasticity, 2nd ed. (Mc Graw-Hill, New-York, 1951), p. 85.Google Scholar
20. Sun, Y., Beltz, G.E., and Rice, J.R., Mat. Sci. and Eng.A 170, 67 (1993).Google Scholar
21. Brochard, S., Beauchamp, P., and Grilhé, J., Phys. Rev. B 61, 8707 (2000).Google Scholar
22. Frenkel, J., Z. Phys. 37, 572 (1926).Google Scholar
23. Rose, J.H., Ferrante, J., and Smith, J.R., Phys. Rev. Lett. 47, 675 (1981).Google Scholar
24. Blandin, A., Friedel, J., and Saada, G., J. Phys. 27, C3 (1966).Google Scholar