Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T17:46:26.545Z Has data issue: false hasContentIssue false

Columnar and Subsurface Silicide Growth with Novel Molecular Beam Epitaxy Techniques

Published online by Cambridge University Press:  25 February 2011

Robert W. Fathauer
Affiliation:
Center for Space Microelectronics Technology, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
Thomas George
Affiliation:
Center for Space Microelectronics Technology, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
W. Thomas Pike
Affiliation:
Center for Space Microelectronics Technology, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
Get access

Abstract

Molecular beam epitaxy of silicides is conventionally carried out at temperatures ≤500°C, with stoichiometric Si:metal flux ratios or deposition of pure metal. We have found novel growth modes for epitaxial CoSi2 at high temperatures coupled with Si-rich flux ratios or low deposition rates. In the first of these modes, codeposition of metal and Si at 600-800°C with excess Si leads to the formation of epitaxial silicide columns surrounded by single-crystal Si. During the initial stages of the deposition, the excess Si grows homoepitaxially in between the silicide, which forms islands, so that the lateral growth of the islands is confined. Once a template layer is established by this process, columns of silicide form as a result of selective epitaxy of silicide on silicide and Si on Si. This growth process allows nanometer control over silicide particles in three dimensions. In the second of these modes, a columnar silicide seed layer is used as a template to nucleate subsurface growth of CoSi2. With a 100 nm Si layer covering CoSi2 seeds, Co deposited at 800°C and 0.01 nm/s diffuses down to grow on the buried seeds rather than nucleating surface silicide islands. For thicker Si caps or higher deposition rates, the surface concentration of Co exceeds the critical concentration for nucleation of islands, preventing this subsurface growth mode from occurring. Using this technique, single-crystal layers of CoSi2 buried under single-crystal Si caps have been grown.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kanel, H. von, Henz, J., Ospelt, M., Hugi, J., Muller, E., and Onda, H., Thin Solid Films 184, 295 (1990).Google Scholar
2. Tung, R.T. and Batstone, J.L., Appl. Phys. Lett. 52, 648 (1988).Google Scholar
3. Tung, R.T. and Batstone, J.L., Appl. Phys. Lett. 52, 1611 (1988).Google Scholar
4. Fathauer, R.W., Iannelli, J.M., Nieh, C.W., and Hashimoto, Shin, Appl. Phys. Lett. 57, 1419 (1990).Google Scholar
5. Tabatabaie, N., Sands, T., Harbison, J.P., Gilchrist, H.L., Cheeks, T.L., Florez, L.T., and Keramidas, V.G., in IEDM Technical Digest (IEEE, Piscataway, NJ, 1989), pp. 555558.Google Scholar
6. Weber, E.R., in Properties of Silicon (INSPEC, London, 1988), Chap. 14.Google Scholar
7. White, Alice E., Short, K.T., Dynes, R.C., Garno, J.P., and Gibson, J.M., Appl. Phys. Lett. 50, 95 (1987).Google Scholar
8. Fathauer, R.W., Nieh, C.W., Xiao, Q.F., and Hashimoto, Shin, Appl. Phys. Lett. 55, 247 (1989).Google Scholar
9. George, T. and Fathauer, R.W., Appl. Phys. Lett. 59, 3249 (1991).Google Scholar
10. Hashimoto, S., Xiao, Q.F., Gibson, W.M., Nieh, C.W., and Fathauer, R.W., Nuclear Instr. and Meth. in Phys. Res. B45, 434 (1990).Google Scholar
11. Ishibashi, K. and Furukawa, S., Jpn. J. Appl. Phys. 24, 912 (1985).Google Scholar
12. Colclaser, R.A., Microelectronics Processing and Device Design (Wiley, New York, 1980), Chap. 5.Google Scholar
13. d'Avitaya, F.A., Delage, S., Rosencher, E., and Derrien, J., J. Vac. Sci. Technol. B 3, 770 (1985).Google Scholar
14. George, T. and Fathauer, R.W., Mat. Res. Soc. Symp. Proc. Vol. 237, ed. by Liang, K.S., Anderson, M.P., Bruinsma, R.F., and Scoles, G. (Materials Research Society, Pennington, NJ, 1992), pp. 493498.Google Scholar
15. Fathauer, R.W., Nieh, C.W., Xiao, Q.F., and Hashimoto, S., Mat, Res. Soc. Symp. Proc., Vol. 198, ed. by Shaw, D.W., Bean, J.C., Keramidas, V.G., and Peercy, P.S. (Materials Research Society, Pennington, NJ, 1990), pp. 583588.Google Scholar