Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T02:21:58.892Z Has data issue: false hasContentIssue false

Colloidal Synthesis and Properties of InAs/InP and InAs/CdSe Core/Shell Nanocrystals

Published online by Cambridge University Press:  10 February 2011

Yun-Wei Cao
Affiliation:
Department of Physical Chemistry and the Farkas Center for Light Induced Processes, The Hebrew University, Jerusalem 91904, Israel.
Julia Aksenton
Affiliation:
Department of Physical Chemistry and the Farkas Center for Light Induced Processes, The Hebrew University, Jerusalem 91904, Israel.
Victor Soloviev
Affiliation:
Department of Physical Chemistry and the Farkas Center for Light Induced Processes, The Hebrew University, Jerusalem 91904, Israel.
Uri Banin
Affiliation:
Department of Physical Chemistry and the Farkas Center for Light Induced Processes, The Hebrew University, Jerusalem 91904, Israel. [email protected]
Get access

Abstract

High-temperature colloidal synthesis of InAs/InP and InAs/CdSe core/shell nanocrystal quantum dots is reported. InP and CdSe shells with several thicknesses were grown on InAs cores ranging in diameter between 20 to 50 Å. Optical spectra, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and X-ray diffraction (XRD) were used to analyze the core/shell quantum dots and determine their chemical composition, average size, size distributions, and structures. The experimental results indicate that shell growth is uniform, expitaxial, and controllable. For both InP and CdSe shells, growth is accompanied by a red shift of the band gap energy as a result of the extension of the electron wavefunction into the shell region. An increase of the room temperature photoluminescence quantum yield by a factor of∼4 is observed with CdSe shell growth on InAs Cores. The growth of InP shells, however, quenches the photoluminescence quantum yield. The difference is assigned to outer surface effects in core/shell nanocrystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Guzelian, A. A., Banin, U., Kadanich, A. V., Peng, X., and Alivisatos, A. P., Appl. Phys. Lett. 69, 1432 (1996).10.1063/1.117605Google Scholar
2. Murry, C. B., Norris, D. J. and Bawendi, M. G., J. Am. Chem. Soc. 115, 8706 (1993).10.1021/ja00072a025Google Scholar
3. Hines, M. A., and Guyot-Sionnest, P., J. Phys. Chem. 100, 468 (1996).10.1021/jp9530562Google Scholar
4. Peng, X., Schlamp, M. C., Kadavanich, A. V., and Alivistos, A. P., J. Am. Chem. Soc. 119, 70197029 (1997).10.1021/ja970754mGoogle Scholar
5. Dabbousi, B. O., Rodriguez-Viejo, J., Mikulec, F. V., Heine, J. R., Mattoussi, H., Ober, R., Jensen, K. F., and Bawendi, M. G., J. Phys. Chem. B 101, 94639475 (1997).10.1021/jp971091yGoogle Scholar
6. Wickham, J., Peng, X., and Alivisatos, A. P., Private communication.Google Scholar
7. Alivisatos, A. P., Science 271, 933937 (1996).10.1126/science.271.5251.933Google Scholar
8. Bruchez, M., M, Moronne, Gin, P., Weiss, S., Alivisatos, A. P., Science 281, 20132016 (1998).10.1126/science.281.5385.2013Google Scholar
9. Banin, U., Lee, J. C., Guzelian, A. A., Kadavanich, A. V., and Alivisatos, A. P., Superlatt. Microstruct. 22, 559567 (1997).10.1006/spmi.1997.0504Google Scholar
10. Wei, S. and Zunger, A., Appl. Phys. Lett. 72, 20112013 (1998).10.1063/1.121249Google Scholar
11. Peng, X., Wickham, J., and Alivisatos, A. P., J. Am. Chem. Soc. 120, 53435344, (1998).10.1021/ja9805425Google Scholar
12. Guzelian, A. A., Katari, J. E. B., Kadavanich, A. V., Banin, U., Hamad, K., Juban, E., Alivisatos, A. P., Wolters, R. H., Arnold, C. C., and Heath, J. R., J. Phys. Chem. 100, 7212 (1999).10.1021/jp953719fGoogle Scholar