Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T02:06:00.606Z Has data issue: false hasContentIssue false

Colloidal Stability in Ionic Liquids and Relevant Soft Materials

Published online by Cambridge University Press:  11 July 2012

Masayoshi Watanabe
Affiliation:
Department of Chemistry and Biochemistry, Yokohama National University, Tokiwadai 79-5, Hodogaya-ku, Yokohama 240-8501, Japan.
Get access

Abstract

Ionic liquids (ILs) are receiving a great deal of attention as synthetic and dispersion media for colloidal systems, as well as alternatives to organic solvents and electrolyte solutions. Colloidal stability is an essential factor for determining the properties and performance of colloidal systems combined with ILs. The remarkable properties of ILs primarily originate from their highly ionic nature. While such high ionic strength often causes colloidal aggregation in aqueous and organic dispersions, certain colloidal particles can be well dispersed in ILs without any stabilizers. First, we will discuss the colloidal stability of bare and polymer-grafted silica nanoparticles and the surface force between silica substrates in ILs. Three different repulsions between colloidal particles—electrostatic, steric, and solvation forces—will be highlighted. A possible interpretation of the stabilization mechanism in ILs, both in the presence and in the absence of stabilizers, will be proposed. Next, we will provide an overview of our recent studies on colloidal soft materials with ILs. On the basis of dispersed states of the silica colloids, two different soft materials, colloidal gel and colloidal glass in ILs, were fabricated. Their functional properties (such as ionic transport, rheological properties, and optical properties) and the microstructure of the colloidal materials will also be presented.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ueno, K. and Watanabe, M., Langmuir, 27, 9105 (2011).10.1021/la103942fGoogle Scholar
2. Ueno, K., Inaba, A., Kondoh, M., and Watanabe, M., Langmuir, 24, 5253 (2008).10.1021/la704066vGoogle Scholar
3. Atkin, R. and Warr, G. G., J. Phys. Chem. C, 111, 5162 (2007).10.1021/jp067420gGoogle Scholar
4. Ueno, K., Kasuya, M., Watanabe, M., Mizukami, M., and Kurihara, K., Phys. Chem. Chem. Phys., 12, 4066 (2010).10.1039/b923571jGoogle Scholar
5. Pinilla, C., Del Popolo, M. G., Lynden-Bell, R. M., and Kohanoff, J., J. Phys. Chem. B, 109, 17922 (2005).10.1021/jp052999oGoogle Scholar
6. Mezger, M., Schröder, H., Reichert, H., Schramm, S., Okasinski, J. S., Schöder, S., Honkimäki, V., Deutsch, M., Ocko, B. M., Ralston, J., Rohwerder, M., Stratmann, M., and Dosch, H., Science, 322, 424 (2008).10.1126/science.1164502Google Scholar
7. Ueno, K., Hata, K., Katakabe, T., Kondoh, M., and Watanabe, M., J. Phys. Chem. B, 112, 9013 (2008).10.1021/jp8029117Google Scholar
8. Ueno, K., Imaizumi, S., Hata, K., and Watanabe, M., Langmuir, 25, 825 (2009).10.1021/la803124mGoogle Scholar
9. Ueno, K., Inaba, A., Sano, Y., Kondoh, M., and Watanabe, M., Chem. Commun., 3603 (2009).Google Scholar
10. Ueno, K., Sano, Y., Inaba, A., Kondoh, M., and Watanabe, M., J. Phys. Chem. B, 114, 13095 (2010).10.1021/jp106872wGoogle Scholar
11. Ueno, K., Inaba, A., Ueki, T., Kondoh, M., and Watanabe, M., Langmuir, 26, 18031 (2010).10.1021/la103716qGoogle Scholar
12. Prum, R. O., Torres, R. H., Williamson, S., and Dyck, J., Nature, 396, 28 (1998).10.1038/23838Google Scholar