Published online by Cambridge University Press: 11 July 2012
Ionic liquids (ILs) are receiving a great deal of attention as synthetic and dispersion media for colloidal systems, as well as alternatives to organic solvents and electrolyte solutions. Colloidal stability is an essential factor for determining the properties and performance of colloidal systems combined with ILs. The remarkable properties of ILs primarily originate from their highly ionic nature. While such high ionic strength often causes colloidal aggregation in aqueous and organic dispersions, certain colloidal particles can be well dispersed in ILs without any stabilizers. First, we will discuss the colloidal stability of bare and polymer-grafted silica nanoparticles and the surface force between silica substrates in ILs. Three different repulsions between colloidal particles—electrostatic, steric, and solvation forces—will be highlighted. A possible interpretation of the stabilization mechanism in ILs, both in the presence and in the absence of stabilizers, will be proposed. Next, we will provide an overview of our recent studies on colloidal soft materials with ILs. On the basis of dispersed states of the silica colloids, two different soft materials, colloidal gel and colloidal glass in ILs, were fabricated. Their functional properties (such as ionic transport, rheological properties, and optical properties) and the microstructure of the colloidal materials will also be presented.