Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T01:41:06.152Z Has data issue: false hasContentIssue false

Colloidal copper sulfide nanocrystals: Electrochemical, electrical and morphological properties

Published online by Cambridge University Press:  12 May 2015

Alejandro Baray-Calderón
Affiliation:
Posgrado en Ciencia e Ingeniería de Materiales, Universidad Nacional Autónoma de México, UNAM, México
R. Galindo
Affiliation:
Centro de Investigaciones en Óptica A.C., León Guanajuato, México Cátedra CONACyT, Universidad de Guanajuato
J. L Maldonado.
Affiliation:
Centro de Investigaciones en Óptica A.C., León Guanajuato, México
Omar Martínez-Alvarez
Affiliation:
Universidad Politécnica de Guanajuato, Guanajuato, México
L.S. Acosta-Torres
Affiliation:
Escuela Nacional de Estudios Superiores, Unidad León, UNAM, León Guanajuato, México.
José Santos-Cruz
Affiliation:
Universidad Autónoma de Querétaro, Querétaro México
J. de la Fuente-Hernández
Affiliation:
Escuela Nacional de Estudios Superiores, Unidad León, UNAM, León Guanajuato, México.
M.C. Arenas-Arrocena*
Affiliation:
Escuela Nacional de Estudios Superiores, Unidad León, UNAM, León Guanajuato, México.
*
*Corresponding Author [email protected]
Get access

Abstract

The highlight of this work is the synthesis of copper sulfide nanocrystals by a simple one-pot colloidal process, and the study of its electrochemical, electrical and morphological properties. Nanocrystals of Cu1.8S of about 15-30 nm were obtained at a temperature of 240°C under an argon atmosphere. The colloidal solution of the nanocrystals was analyzed by cyclic voltammetry. Agreeing to the values of EOx and ERedvs. SCE, and the average of three samples the HOMO and LUMO levels are 6.16 and 4.27 eV, respectively, the calculated HOMO – LUMO (Eg) is 1.89 eV. The Eg value, differs of that value obtained from Kubelka-Munk equation (1.7 eV). The photocurrent vs. time results showed that the Cu1.8S/Cu junction is photosensitive and could be used as absorbing material. The morphology and the topography of the film were analyzed by SEM and AFM techniques. Irregular agglomeration of nanocrystals was observed and a roughness of about 194 nm.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Quintana, Priscilla V., Arenas-Arrocena, M.C., Santos-Cruz, J., Vega-González, M., Martínez-Álvarez, O., Castaño-Meneses, V.M., Acosta-Torres, L.S., de la Fuente-Hernández, J., Growth evolution and phase transition from chalcocite to digenite nanocrystalline copper sulphide: Morphological, optical and electrical properties, Beilstein Journal of Nanotechnology 5 (2014) 15421552.CrossRefGoogle Scholar
Lu, Yunzhang, Hou, Yanbing, Wang, Yan, Feng, Zhihui, Liu, Xiaojun, , Yanwu, Effect of monodisperse Cu2S nanodisks on photovoltaic performance of P3HT/PCBM polymer solar cells, Synthetic Metals 161 (2011) 906910.CrossRefGoogle Scholar
Gollu, Sankara Rao, Sharma, Ramakant, Srinivas, G., Kundu, Souvik, Gupta, Dipti, Effects of incorporation of copper sulfide nanocrystals on the performance of P3HT: PCBM based inverted solar cells, Organic Electronics 15 (2014) 25182525.CrossRefGoogle Scholar
Quintana-Ramírez, Priscilla V. and Arenas, M. C. “Effect of Copper Sulfide nanocrystals in a poly(3-hexylthiophene)/Titania solar cell”, Mater. Res. Soc. Symp. Proc. 1537 © 2013 Materials Research Society DOI: 10.1557/opl.2013.791.CrossRefGoogle Scholar
Li, Zhong-guo, Qian, Xue-min, Xiao, Zhengçguo, Wei, Tai-Huei, Song, Ying-lin, Nonlinear absorption and scattering properties of copper sulfide nanocrystals, Chemical Physics Letters 612 (2014) 219222.CrossRefGoogle Scholar
Murphy, A.B., Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting, Solar Energy Materials & Solar Cells 91 (2007) 13261337.CrossRefGoogle Scholar