Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T17:24:46.623Z Has data issue: false hasContentIssue false

Colloidal Au Nanoclusters Formed in Fused Silica by MeV Ion Implantation and Annealing

Published online by Cambridge University Press:  22 February 2011

C. W. White
Affiliation:
Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, Tennessee 37831-6057
D. S. Zhou
Affiliation:
Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, Tennessee 37831-6057
J. D. Budai
Affiliation:
Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, Tennessee 37831-6057
R. A. Zuhr
Affiliation:
Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, Tennessee 37831-6057
R. H. Magruder
Affiliation:
Vanderbilt University, Nashville, Tennessee
D. H. Osborne
Affiliation:
Vanderbilt University, Nashville, Tennessee
Get access

Abstract

MeV implantation of Au has been used to create a high density of Au nanoclusters in the near surface of fused silica. Measurements of the nanocluster size and size distribution under various implantation/annealing conditions are presented and correlated with measurements of optical absorption arising from surface plasmon resonance absorption by the Au nanoclusters in fused silica. Preliminary measurements of the nonlinear refractive index are included.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Ricard, D., Roussignol, P., and Flytzanis, C., Opt. Lett. 10, 511 (1985).Google Scholar
2 Hache, F., Ricard, D., Flytzanis, C., and Kreibig, U., Appl. Phys. A47, 347 (1988).Google Scholar
3 Arnold, G. W., J. Appl. Phys. 46, 4466 (1975).Google Scholar
4 Magruder, R. H., Yang, L., Haglund, R. F., White, C. W., Yang, L., Dorsinville, R., and Alfando, R. R., Appl. Phys. Lett. 62, 1730 (1993).Google Scholar
5 Fukumi, K., Chayahara, A., Satou, M., Hayakawa, J., Hangyo, M., and Nakashima, S., Jap. J. Appl. Phys. 30, L742 (1991).Google Scholar
6 Fukumi, K. et al. , Mat Res. Soc. Sym. Proc. 235, 389 (1992).Google Scholar
7 Abouchacra, G., Chassagne, G., and Serughetti, J., Rad. Effects 64, 189 (1982).Google Scholar
8 White, C. W., Thomas, D. K., Zuhr, R. A., McCallum, J. C., Pogany, A., Haglund, R. F., Magruder, R. H., and Yang, L., Mat. Res. Soc. Sym. Proc. 268, 331 (1992).Google Scholar
9 Haglund, R. F. et al. , Proceedings of the 7th International Conference on Radiation Effects in Insulators, Elsevier, Amsterdam (in press).Google Scholar
10 See for example, Mantl, S., Mat. Sci. Reports 8, 1 (1992).Google Scholar
11 Mie, G., Ann. Physik 25, 377 (1908).Google Scholar
12 Doyle, W. T., Phys. Rev. 111, 1067 (1958).Google Scholar
13 Doremus, R. H., J. Chem. Phys. 40, 2389 (1964); J. Appl. Phys. 37, 2775 (1966).Google Scholar
14 Sheik-Bahae, M., Said, A., Wei, T., Hagan, D. J., and VanStryland, E. W., IEEE J. Quantum Elect. 26, 760 (1990).Google Scholar
15 Boyd, R. W., Nonlinear Optics (Academic Press, Boston, Mass.) 1992.Google Scholar
16 Hache, F., Ricard, D., and Flytzanis, C., J. Opt. Soc. Am. B3, 1647 (1989).Google Scholar