Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T17:35:27.614Z Has data issue: false hasContentIssue false

Coherent V2O3 Precipitates in ɑ-Al2O3 Co-Implanted With Vanadium and Oxygen

Published online by Cambridge University Press:  21 February 2011

Laurence A. Gea
Affiliation:
Solid State Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831
L. A. Boatner
Affiliation:
Solid State Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831
Janet Rankin
Affiliation:
Brown University, Providence, RI02912
J. D. Budai
Affiliation:
Solid State Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831
Get access

Abstract

The oxides of vanadium VO2 and V2O3 are of fundamental and practical interest since they undergo structural phase transitions during which large variations in their optical and electronic properties are observed. In the present work, we report the formation of buried precipitates of V2O3 in sapphire by ion implantation and thermal annealing. It was found that the co-implantation of oxygen and vanadium was required in order to form nanophase V2O3 precipitates. Additionally, these precipitates, which formed only following an anneal of the co-implanted sample under reducing conditions, are coherent with the sapphire lattice. Two epitaxial relationships were observed: (0001)V2O3//(0001) ɑ-Al2O3 and (11-20)V2O3//(0001) ɑ-Al2O3. This finding is in agreement with results obtained elsewhere for thin films of V2O3 deposited on c-axis-oriented sapphire.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 McWhan, D. B. and Remeika, J. P., Phys. Rev. B 2, 3734 (1970).; S. Minomura, and H.Nagasaki, J. Phys. Soc. Japan 19,131 (1964)Google Scholar
2 Morin, F. J., Phys. Rev. Lett. 3, 34 (1959).Google Scholar
3 Lee, C. E., Atkins, R. A., Gibier, W.N., and Taylor, H. F., Appl. Optics 28, 4511 (1989).Google Scholar
4 Stringer, J., J. Less. Comm. Met. 8,1 (1965).Google Scholar
5 Kachi, S., Takada, T., Bando, Y., Kosuge, K., Okinaka, H., and Nagasawa, K., Ferrites : Proc. of the Int. Conf., p. 563 ( July 1970) Japan.Google Scholar
6 Rogers, K. D., Coath, J. A., and Lovell, M. C., J. Appl. Phys. 70 (3), 1412 (1991) ; H. Jeronimek, F. Picard, D. Vincent, Opt. Eng. 32 (9) 2092 (1993).Google Scholar
7 Case, F. C., J. Vac. Sei. Technol. A9(3), 461 (1991)Google Scholar
8 Partlow, D. P., Gurkovitch, S.R., Radford, K. C., and Denes, L.J., J. Appl. Phys. 70(1), 443, (1991).Google Scholar
9 White, C. W., McHargue, C. J., Sklad, P. S., Boatner, L. A., and Farlow, G. C., Mat. Sei. Reports 4(2,3) 41146 (1989).Google Scholar
10 White, C. W., Boatner, L. A., Sklad, P. S., McHargue, C. J., Rankin, J., Farlow, G.C., and Aziz, M. J., Nucl. Inst. Meth. B32,11 (1988).Google Scholar
11 Okhubo, M., Hioki, T., and Kawamoto, J., J. Appl. Phys. 60(4), 1325 (1986).Google Scholar
12 Naramoto, H., White, C. W., Williams, J. M., McHargue, C. J., Holland, O. W., Abraham, M.M., and Appleton, B. R., J. Appl. Phys. 54(2), 683 (1983).Google Scholar
13 Farlow, G. C., White, C. W., McHargue, C. J., Sklad, P. S., and Appleton, B. R., Nucl. Inst. Meth. Phys. Res. B7/8,541 (1985).Google Scholar
14 Gea, L. A., unpublished.Google Scholar
15 Ziegler, J.F., Biersack, J.P., and Littmark, U., The stopping and ranges of ions in solids, (Pergamon, New York, 1980).Google Scholar
16 Zhou, W. and Sood, D. K., Nucl. Inst. Meth. Phys. Res. B59/60 ,1195 (1991).Google Scholar