Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T02:30:20.796Z Has data issue: false hasContentIssue false

Co-catalytic Effect of Functionalized SiO2 Materials on H2 Production from Formic Acid by an Iron Catalyst

Published online by Cambridge University Press:  02 April 2014

Panagiota Stathi*
Affiliation:
Laboratory of Inorganic Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece.
Yiannis Deligiannakis
Affiliation:
Laboratory of Physical Chemistry, Department of Environmental and Natural Resources Management, University of Patras, Seferi 2, 30100 Agrinio, Greece.
Maria Louloudi*
Affiliation:
Laboratory of Inorganic Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece.
Get access

Abstract

Surface modified L@SiO2 particles bearing covalently attached functional groups (L) have been tested as co-catalysts for H2 production from Formic Acid (FA) by the homogenous FeII/P(CH2CH2PPh2)3 catalyst. The L@SiO2 particles induce remarkable increase of catalytic H2 production i.e. by 710 %, when L=a basic functionality such as Imidazoles, or NH2-groups. This effect is attributed to a thermodynamic promotion of FA deprotonation facilitating coordination of HCOO- anion on the FeII atom of active catalyst during catalysis.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Boddien, A., Loges, B., Gartner, F., Torborg, C., Fumino, K., Junge, H., Ludwig, R., Beller, M., J. Am. Chem. Soc. 132, 8924 (2010).CrossRefGoogle Scholar
Laurenczy, R. Ludwig, M. Beller, Science, 333, 1733 (2011). [2] A. Boddien, D. Mellmann, F. Gärtner, R. Jackstell, H. Junge, P. J. Dyson, G.Google Scholar
Fukuzumi, S., Kobayashi, T., Suenobu, T., Chem. Sus. Chem. 1 (2008) 827.CrossRefGoogle Scholar
Fukuzumi, S., Kobayashi, T., Suenobu, T., J. Am. Chem. Soc. 132 (2010) 1496.CrossRefGoogle Scholar
Zhao, Y., Tang, S.Y., Lai, D. M., Liao, B., Fu, Y., Guo, Q. X., Energy Fuels 25, 3693 (2011).CrossRefGoogle Scholar
Sanches-de-Armas, R.. Xue, L., Ahlquist, M..G. Chemistry Eu. J. 19, 11869 (2013).CrossRefGoogle Scholar
Stathi, P., Mitrikas, G., Louloudi, Y. Sanakis M., Y. Deligiannakis,Molecular Physics 111, 18 (2013).Google Scholar
Butterworth, A.J., Clark, J.H., Walton, P.H., Barlow, S.J., Chem. Commun. 1859 (1996).Google Scholar
Stathi, P., Louloudi, M., Y. Deligiannakis Chem. Phys. Letters 472, 85 (2009).Google Scholar
Milaeva, E.R., Gerasimova, O.A., Maximov, A.L., Ivanova, E.A., Karachanov, E.A., Hadjiiliadis, N., , M. Louloudi Cat. Comm. 8, 2069 (2007).Google Scholar