Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T15:37:11.504Z Has data issue: false hasContentIssue false

Coating Adhesion Effects on Fiber Strength and Fatigue Properties

Published online by Cambridge University Press:  25 February 2011

Bolesh J. Skutnik
Affiliation:
Ensign-Bickford Industries, Inc., Simsbury, CT 06070
Barbara D. Munsey
Affiliation:
Ensign-Bickford Industries, Inc., Simsbury, CT 06070
Carol T. Brucker
Affiliation:
Ensign-Bickford Optics Co., Avon, CT 06001
Get access

Abstract

Organic/polymeric materials remain the most prevalent protective coatings for optical fibers. Many studies have chronicled significant differences inn the levels of protection against moisture and other adverse environments by such coatings. Recently an attempt was made to identify those coating properties which correlate with these protective characteristics. Water absorption and adhesion between the coating and fused silica were proposed to correlate the best.

In this study a series of coatings have been prepared with varying levels of adhesion to fused silica substrates, without significant differences in water absorption or in water permeation properties. The tensile strength, static fatigue and dynamic fatigue properties of the coated fibers were measured and correlated with the lap shear strengths of correspondingly coated slides. As the adhesion of the coating/silica glass interface increases, the corresponding fiber's strength and fatigue properties improve also.

The strong positive correlation between the coating's adhesion and the fiber's strength/fatigue properties will be reported for a number of coating/fiber combinations. Effects on lifetime predictability will also be addressed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Skutnik, B. J. and Hille, R. E., in Fiber Optics in Adverse Environments II, SPIE Proc. 506, 184–8 (1984).Google Scholar
2. Hodge, M. H., Skutnik, B. J. and Hoar, H. J., paper 18-G-85 Amer. Ceram. Soc. Annual Meetings Abstracts, p. 146, May 1985.Google Scholar
3. Skutnik, B. J., Hodge, M. H. and Nath, D. K., in Proc. Ninth Annual FOC/LAN, San Francisco (Information Gatekeepers Inc., Boston, 1985) pp. 232–236.Google Scholar
4. Skutnik, B. J., Hodge, M. H. and Nath, D. K., paper 83-G-86 Amer. Ceram. Soc. Annual Meeting Abstracts, p. 348, April 1986.Google Scholar
5. Skutnik, B. J., Hodge, M. H. and Clarkin, J. P., paper 18-BEG-86F Amer. Ceram. Soc. Divisional Joint Meeting Abstracts, p. 5, November 1986.Google Scholar
6. Michalske, T. A. and Freiman, S. W., J. Am. Ceram. Soc. 66 284288 (1983).Google Scholar
7. Weiderhown, S. M., Freiman, S. W., Fuller, E. R. Jr. and Simmons, C. J., J. Mater. Sci. 17, 34603478 (1982).Google Scholar
8. Freiman, S. W., White, G. S. and Fuller, E. R. Jr., J. Amer. Soc., 68, 108112 (1985).Google Scholar
9. Michalske, T. A. and Bunker, B. C, J. Appl. Phys. 56 26862693 (1984).CrossRefGoogle Scholar
10. Fisk, G. A. and Michalske, T. A., J. Appl. Phys. 58 27362741 (1985).Google Scholar
11. Sandia Science News, 21 (3), 2,4 (1986).Google Scholar
12. Kalish, D. and Tariyal, B. K., J. Am. Ceram. Soc., 61, 518523 (1978).CrossRefGoogle Scholar
13. Wang, T. T. and Zupko, H. M., J. Mater. Sci., 13 22412248 (1978).Google Scholar
14. Wang, T. T., Vazirani, H. N., Schonhorn, H. and Zupko, H. M., J. Appl. Polym. Sci. 23, 887892 (1979).CrossRefGoogle Scholar
15. Ritter, J. E. Jr., Sullivan, J. M. Jr. and Jakus, K., J. Appl. Phys., 49 47794782 (1978).Google Scholar
16. Ritter, J. E. Jr., Glassemann, G. S. and Jakus, K., J. Mater. Sci. 19, 40874092 (1984).Google Scholar
17. Wei, T., Adv. Ceram. Materials 1, 237243 (1986); in Reliability Consideration Fiber Optic Applications, SPIE Proc. 717 to be published 1987.CrossRefGoogle Scholar
18. Charles, R. J., J. Appl. Phys. 29, 15491553 (1958); 2, 1554–1560 (1958); 29, 1657–1670 (1958).Google Scholar
19. Proctor, B. A., Whitney, I. and Johnson, J. W., Proc. Roy. Soc. (London) A297, 534557 (1967).Google Scholar
20. Morley, J. G., Andrews, P. A. and Whitney, I., Phys. Chem Glasses 5, 110 (1964).Google Scholar
21. Matthewson, M. J. and Kurkjian, C. R., paper 81-G-86 Amer. Ceram. Soc. Annual Meeting Abstracts, p. 347, April 1986.Google Scholar
22. Kurkjian, C. R. and Paek, U. C., Appl. Phys. Lett. 42, 251253 (1983).Google Scholar