Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-03T00:50:57.617Z Has data issue: false hasContentIssue false

Coarsening of Extremely Small Particles in the Cu-Ni-Fe System

Published online by Cambridge University Press:  21 February 2011

W. Gust
Affiliation:
Max-Planck-Institut für Metallforschung and Institut für Metallkunde, SeestraBe 92, D-7000 Stuttgart I, Frg
E. Wachtel
Affiliation:
Max-Planck-Institut für Metallforschung and Institut für Metallkunde, SeestraBe 92, D-7000 Stuttgart I, Frg
B. FrüHauf
Affiliation:
Max-Planck-Institut für Metallforschung and Institut für Metallkunde, SeestraBe 92, D-7000 Stuttgart I, Frg
B. Predel
Affiliation:
Max-Planck-Institut für Metallforschung and Institut für Metallkunde, SeestraBe 92, D-7000 Stuttgart I, Frg
Get access

Abstract

By means of magnetic methods, in the Cu-jo.7a/o Ni-1. 6 a//o Fe alloy the Ostwald ripening of extremely small particles has been studied. It appears that the magnetic methods are very suitable for such investigations, as in addition to a high exactness, an easy way of execution is guaranteed. The chemical volume diffusion coefficients determined for 673 to 873 K are characterized by the Arrhenius parameters Do = 1.81 × 10−5 m2/s and ΔH = 219.4 kJ/mol.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Becker, J.J., Trans. AIME 209, 59 (1957).Google Scholar
2. Lifshitz, I.M. and Slyozov, V.V., J. Phys. Chem. Solids 19, 35 (1961).Google Scholar
3. Wagner, C., Z. Elektrochem. 65, 581 (1961).Google Scholar
4. Courtney, T.H., in: Proc. Int. Conf. Solid-Solid Phase Transf., Aaronson, H.I. et al. , eds. (The Metall. Soc. AIME, New York 1982) pp. 10571076.Google Scholar
5. Martin, J.W. and Doherty, R.D., Stability of Microstructure in Metallic Systems (Cambridge Univ. Press, Cambridge 1976) p. 175.Google Scholar
6. Köster, W. and Dannöhl, W., Z. Metallk. 27, 220 (1935).Google Scholar
7. Bradley, A.J., Cox, W.F., and Goldschmidt, H.J., J. Inst. Metals 67, 189 (1941).Google Scholar
8. Palmer, E.W. and Wilson, F.H., Trans. AIME 4, 55 (1952).Google Scholar
9. Berg, P.J. and de Lange, R.G., Report No. 134M, Nederlands Scheepsstudiecentrum TNO, Part II, Nov. 1969, pp. 1–27.Google Scholar
10. Richter, F. and Pepperhoff, W., Z. Metallk., in the press.Google Scholar
11. Damköhler, R. and Heumann, Th., phys. stat. sol. (a) 73, 117 (1982).Google Scholar
12. Heumann, Th. and Grundhoff, K.J., Z. Metallk. 63, 173 (1972).Google Scholar
13. lijima, Y., Hirano, K.,and Kickuchi, M., Trans. Japan Inst. Met. 23, 19 (1982).Google Scholar
14. Nyilas, A., Betz, G., and Frohberg, M.G., Z.Metallk. 64, 824 (1973).Google Scholar
15. Marchukova, I.D. and Miroshkina, M.I., Fiz. metal. metalloved. 32, 1254 (1971).Google Scholar
16. Carpenter, J.A., Tenney, D.R., and Houska, C.R., J. Appl. Phys. 42, 4305 (1971).Google Scholar
17. Levasseur, J. and Philibert, J., C.R. Acad. Sc. Paris, Ser. C, 264, 277 (1967),Google Scholar
17a. cited after Diffusion Data 1 (1), 13 (1979).Google Scholar
18. Dutt, M.B., Sen, S.K., and Barna, A.K., phys. stat. sol. (a) 56, 149 (1979).Google Scholar
19. van Dijk, T. and Mittemeijer, E.J., Thin Solid Films 41, 173 (1977).Google Scholar
20. Tsakalakos, T., Scripta Met. 15, 255 (1981).Google Scholar
21. Kneller, E., Ferromagnetismus (Springer, Berlin 1962) p. 427.Google Scholar
22. Mackliet, C.A., Phys. Rev. 109, 1964 (1958).Google Scholar
23. Macht, M.P., Naundorf, V., and Döhl, R., Proc. Conf. Diffusion in Metals and Alloys, 29.8. – 3.9.1982, Tihany, Hungary.Google Scholar
24. Maier, K., phys. stat. sol. (a) 44, 576 (1977).Google Scholar