Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T15:19:20.276Z Has data issue: false hasContentIssue false

Coarsening in Two-Dimensional Soap Froths and the Large-Q Potts Model

Published online by Cambridge University Press:  21 February 2011

Gary S. Grest
Affiliation:
Corporate Research Science Laboratory, Exxon Research and Engineering Company, Annandale, NJ 08801
James A. Glaziers
Affiliation:
Research Institute of Electrical Communications, Tohoku University, Sendai 980, Japan
Michael P. Anderson
Affiliation:
Corporate Research Science Laboratory, Exxon Research and Engineering Company, Annandale, NJ 08801
Elizabeth A. Holm
Affiliation:
Department of Material Science and Engineering, The University of Michigan, Ann Arbor, Michigan 48109
David J. Srolovitz
Affiliation:
Department of Material Science and Engineering, The University of Michigan, Ann Arbor, Michigan 48109
Get access

Abstract

A detailed comparison between the experimental evolution of a two-dimensional soap froth and the large Q state Potts model is presented. The pattern evolution starting from identical initial conditions will be compared as well as a variety of distribution functions and correlations of the two systems. Simulations on different lattices show that the discrete lattice of the Potts model causes deviations from universal domain growth by weakening the vertex angle boundary conditions that form the basis of von Neumann's law. We show that the anisotropy inherent in a discrete lattice simulation, which masks the underlying ‘universal’ grain growth, can be overcome by increasing the range of the interaction between spins or increasing the temperature. Excellent overall agreement between the kinetics, topological distributions and domain size distributions between the low lattice anisotropy Potts-model simulations and the soap froth suggests that the Potts model is useful for studying domain growth in a wide variety of physical systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Glazier, J. A., Anderson, M. P., and Grest, G. S., Phil. Mag. B 62, 615 (1990);CrossRefGoogle Scholar
Glazier, J. A., Grest, G. S. and Anderson, M. P., in Simulation and Theory of Evolving Microstructures, edited by Anderson, M. P. and Rollett, A. D. (The Minerals, Metals and Materials Society) Warrendale, PA., (1990) p. 41.Google Scholar
2. Beck, P. A., Adv. Phys. 3, 245 (1954);Google Scholar
Atkinson, H. V., Acta Met. 36, 469 (1988).Google Scholar
3. Weaire, D. and Rivier, N., Contemp. Phys. 25, 59 (1984).Google Scholar
4. Marder, M., Phys. Rev. A 36, 438 (1987).Google Scholar
5. Fradkov, V. E., Udler, D. G., and Kris, R. E., Philos. Mag. Letters 58, 670 (1988).Google Scholar
6. Fradkov, V. E., Shvindlerman, L. S., and Udler, D. G., Scripta Met. 19, 1285 (1985).Google Scholar
7. Beenakker, C.W. J., Phys. Rev. Lett. 57, 2454 (1986); Phys. Rev. A 37, 1697 (1988).Google Scholar
8. Peshkin, M. A., Strandburg, K. J. and Rivier, N., Phys. Rev. Lett. 67, 1803 (1991).Google Scholar
9. Frost, H. J. and Thompson, C. V., in Computer Simulation of Microstructural Evolution. edited by Srolovitz, D. J. (The Metallurgical Society, Warrendale, PA, 1986), p. 33;Google Scholar
Frost, H. J., Thompson, C.V., Howe, C. L. and Whang, J., Scripta. Metal. 22 65 (1988).Google Scholar
10. Weaire, D. and Kermode, J. P., Philos. Mag. B 47, L29 (1983); Phil. Mag. B 48, 245 (1983);CrossRefGoogle Scholar
Weaire, D. and Kermode, J. P. Philos. Mag. B 50, 379 (1984);Google Scholar
Weaire, D. and Lei, H., Phil. Mag. Lett. 62, 427 (1990).Google Scholar
11. Kawasaki, K., Nagai, T., and Nakashima, K., Phil. Mag. B 60, 1399 (1989).Google Scholar
12. Bolton, F. and Weaire, D., Phys. Rev. Lett. 65, 3449 (1990); Phil. Mag B 63, 795 (1991).Google Scholar
13. Anderson, M. P., Srolovitz, D. J., Grest, G. S., and Sahni, P. S., Acta Met. 32, 783 (1984).Google Scholar
14. Srolovitz, D. J., Anderson, M. P., Sahni, P. S., and Grest, G. S., Acta Met. 32, 793 (1984).Google Scholar
15. Grest, G. S., Srolovitz, D. J., and Anderson, M. P., Phys. Rev. B 38, 4752 (1988).Google Scholar
16. Wejchert, J., Weaire, D., and Kermode, J. P., Philos. Mag. B 53, 15 (1986).Google Scholar
17. Holm, E. A., Glazier, J. A., Srolovitz, D. J., and Grest, G. S., Phys. Rev. A 43, 2662 (1991).Google Scholar
18. Smith, C. S., in Metal Interfaces. (American Society for Metals, Cleveland, 1952), p. 65.Google Scholar
19. Fu, Tingliang, “A Study of Two-Dimensional Soap Froths” (M.S. thesis, Trinity College, Dublin, 1986).Google Scholar
20. Glazier, J. A., Gross, S. P., and Stavans, J., Phys. Rev. A 36, 306 (1987).Google Scholar
21. Glazier, J. A. and Stavans, J., Phys. Rev. A 40, 7398 (1989).Google Scholar
22. Stavans, J. and Glazier, J. A., Phys. Rev. Lett. 62, 1318 (1989).Google Scholar
23. Glazier, J. A., Ph.D. thesis, University of Chicago, 1989.Google Scholar
24. Stavans, J., Phys. Rev. A 42, 5049 (1990).Google Scholar
25. von Neumann, J., in Metal Interfaces (American Society for Metals, Cleveland, 1952), p. 108.Google Scholar
26. Lai, Z. W., Mazenko, G. F. and Vails, O.T., Phys. Rev. B 37, 9481 (1988).Google Scholar
27. Haessner, F. and Hofmann, S., in Recrvstallization of Metallic Materials. edited by Haessner, F. (Riederu Verlag, Stuttgart, 1978), p. 76.Google Scholar
28. Fradkov, V. E., Kravchenko, A. S., and Shvindlerman, L. S., Scipta Met. 19, 1291 (1985).Google Scholar
29. Lewis, F. T., Anatomical Record 38, 341 (1928).Google Scholar
30. Feltham, F., Acta Met. 5, 97 (1957).Google Scholar
31. Lambert, C. J. and Weaire, D., Metallography 14, 307 (1981).Google Scholar