Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T02:40:18.048Z Has data issue: false hasContentIssue false

CO Coverage Effects on Pt(111) from First-Principles Calculations

Published online by Cambridge University Press:  01 February 2011

Bin Shan
Affiliation:
[email protected], Nanostellar Inc, Computational Nanoscience, 1141 Kassel Ter, Sunnyvale, CA, 94089, United States
Ligen Wang
Affiliation:
[email protected], Nanostellar Inc, 3696 Haven Ave, Redwood City, CA, 94063, United States
Jangsuk Hyun
Affiliation:
[email protected], Nanostellar Inc, 3696 Haven Ave, Redwood City, CA, 94063, United States
Yang Sang
Affiliation:
[email protected], Nanostellar Inc, 3696 Haven Ave, Redwood City, CA, 94063, United States
Yujun Zhao
Affiliation:
[email protected], Nanostellar Inc, 3696 Haven Ave, Redwood City, CA, 94063, United States
John B Nicholas
Affiliation:
[email protected], Nanostellar Inc, 3696 Haven Ave, Redwood City, CA, 94063, United States
Get access

Abstract

CO saturation coverage on Pt(111) is crucially important in diesel oxidation catalysis. We systematically studied high coverage CO adsorption on the Pt(111) surface using density functional theory (DFT) calculations and classical Monte Carlo (MC) simulations. The zero-coverage limit CO adsorption energy at different binding sites is almost degenerate at the revised Perdew–Burke–Erzernhof functional (RPBE) level. As CO populates the surface, strong through-space repulsion and substrate-mediated metal sharing tends to dominate the stability of adsorbates and alter their binding preferences. The calculated differential binding energy curve and adsorption patterns compare well with experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ertl, G., Neumann, M., and Streit, K.M., Surf. Sci. 64, 393 (1977).Google Scholar
2. Persson, B.N.J., Tushaus, M., and Bradshaw, A.M., Chem. Phys. 92, 5034 (1990).Google Scholar
3. Steininger, H., Lehwald, S., and Ibach, H., Surf. Sci. 123, 264 (1982).Google Scholar
4. Pedersen, M.O., Bocquet, M.L., Sautet, P., Laegsgaard, E., Stensgaard, I., and Besenbacher, F., Chem. Phys. Lett. 299, 403 (1999).Google Scholar
5. Vestergaard, E.K., Thostrup, P., An, T., Laegsgaard, E., Stensgaard, I., Hammer, B., and Besenbacher, F., Phys. Rev. Lett. 88, 259601 (2002).Google Scholar
6. Longwitz, S.R., Schnadt, J., Vestergaard, E.K., Vang, R.T., Laegsgaard, E., Stensgaard, I., Brune, H., and Besenbacher, F.J., Chem. Phys. 108, 14497 (2004).Google Scholar
7. Desai, S. and Neurock, M., Elect. Acta. 48, 3759 (2003).Google Scholar
8. Gajdos, M., Eichler, A., and Hafner, J., J. Phys.: Condens. Matter 16, 1141 (2004).Google Scholar
9. Zhang, C., Hu, P., and Alavi, A., J. Am. Chem. Soc. 121, 7931 (1999).Google Scholar
10. Ford, D.C., Xu, Y., and Mavrikakis, M., Surf. Sci. 587, 159 (2005).Google Scholar
11. Petrova, N.V., Yakovkin, I.N., and Ptushinskii, Y.G., Low. Temp. Phys. 31, 224 (2005).Google Scholar
12. Feibelman, P.J., Hammer, B., Norskov, J.K., Wagner, F., Scheffler, M., Stumpf, R., Watwe, R., and Dumesic, J., J. Phys. Chem. B 105, 4018 (2001).Google Scholar
13. Kresse, G., Gil, A., and Sautet, P., Phys. Rev. B 68, 073401 (2003).Google Scholar
14. Steckel, J.A., Eichler, A., and Hafner, J., Phys. Rev. B 68, 085416 (2003).Google Scholar
15. Kohn, W., Rev. Mod. Phys. 71, 1253 (1999).Google Scholar
16. Hammer, B., Hansen, L.B., and Norskov, J.K., Phys. Rev. B 59, 7413 (1999).Google Scholar
17. Kresse, G., and Furthemuller, J., J. Comp. Mat. Sci. 6, 15 (1996).Google Scholar
18. Blochl, P., Phys. Rev. B 50, 17953 (1994).Google Scholar
19. Kandoi, S., Gokhale, A.A., Grabow, L.C., Dumesic, J.A., and Mavrikakis, M., Catal. Lett. 93, 93 (2004).Google Scholar
20. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., and Teller, E., J. Chem. Phys. 21, 1087 (1953).Google Scholar
21. Kirkpatrick, S., Gelatt, C.D. Jr, and Vecchi, M.P., Science 220, 671 (1983).Google Scholar