Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-17T20:14:28.771Z Has data issue: false hasContentIssue false

A CMOS Compatible Carbon Nanotube Growth Approach

Published online by Cambridge University Press:  23 March 2011

Daire Cott
Affiliation:
IMEC, 75 Kapeldreef, Leuven, Belgium
Masahito Sugiura
Affiliation:
Tokyo Electron Ltd., Technology Development Center, 650 Mitsuzawa, Hosaka-cho, Nirasaki, Yamanashi 407-0192, Japan
Nicolo Chiodarelli
Affiliation:
IMEC, 75 Kapeldreef, Leuven, Belgium Electrical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium;
Kai Arstila
Affiliation:
IMEC, 75 Kapeldreef, Leuven, Belgium
Philipe M. Vereecken
Affiliation:
IMEC, 75 Kapeldreef, Leuven, Belgium Center for Surface Chemistry and Catalysis, Katholieke Universiteit Leuven, Leuven, Belgium;
Bart Vereecke
Affiliation:
IMEC, 75 Kapeldreef, Leuven, Belgium
Sven Van Elshocht
Affiliation:
IMEC, 75 Kapeldreef, Leuven, Belgium
Stefan De Gendt
Affiliation:
IMEC, 75 Kapeldreef, Leuven, Belgium Department.of Chemistry, Katholieke Universiteit Leuven, Leuven, Belgium.
Get access

Abstract

In future technology nodes, 22nm and below, carbon nanotubes (CNTs) may provide a viable alternative to Cu as an interconnect material. CNTs exhibit a current carrying capacity (up to 109 A/cm2), whilst also providing a significantly higher thermal conductivity (SWCNT ~ 5000 WmK) over Copper (106 A/cm2 and ~400WmK). However, exploiting such properties of CNTs in small vias is a challenging endeavor. In reality, to outperform Cu in terms of a reduction in via resistance alone, densities in the order of 1013 CNTs/cm2 are required. At present, conventional thermal CVD of carbon nanotubes is carried out at temperatures far in excess of CMOS temperature limits (400 C). Furthermore, high density CNT bundles are most commonly grown on insulating supports such as Al2O3 and SiO2 as they can effectively stabilize metallic nanoparticles at elevated temperatures but this limits their application in electronic devices. To circumvent these obstacles we employ a remote microwave plasma to grow high density CNTs at a temperature of 400 C on conductive underlayers such as TiN. We identify some critical factors important for high-quality CNTs at low temperatures such as control over the catalyst to underlayer interaction and plasma growth environment while presenting a fully CMOS compatible carbon nanotube synthesis approach

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Harutyunyan, A. R., Chen, G., Paronyan, T. M., Pigos, E. M., Kuznetsov, O. A., Hewaparakrama, K., Kim, S. M., Zakharov, D., Stach, E. A., and Sumanasekera, G. U., Science, 326, 116, (2009)Google Scholar
2. Romo-Negreira, A., Cott, D.J., Verhulst, A. S., Esconjauregui, S., Chiodarelli, N., Ek-Weis, J., Whelan, C. M., Groeseneken, G., Heyns, M. M., De Gendt, S., Vereecken, P. M., Mater. Res. Soc. Symp. Proc., 1079E, N0601, 2008.Google Scholar
3. Kawabata, Akio, Sato, Shintaro, Nozue, Tatsuhiro, Hyakushima, Takashi, Norimatsu, Masaaki, Mishima, Miho, Murakami, Tomo, Kondo, Daiyu, Asano, Koji, Ohfuti, Mari, Kawarada, Hiroshi, Sakai, Tadashi, Niheiand, Mizuhisa Awano, Yuji, IEEE 987-1-4244-1911-1/08(2008)Google Scholar
4. Armini, S. and Vereecken, P. M., Abstract No 2780, ECS Meeting Abstracts, 902, Vienna, Austria, Oct 49, (2009)Google Scholar
5. Baker, R. T. K., Harris, P. S., Thomas, R. B. and Waite, R. J., J. Catal. 30, 86 (1973)Google Scholar
6. Merkulov, V. I., Lowndes, D. H., Wei, Y. Y., Eres, G. and Voelkl Appl, E.. Phys. Lett., 76, 24, 12 (2000)Google Scholar
7. Zhang, Guangyu, Mann, David, Zhang, Li, Javey, Ali, Li, Yiming, Yenilmez, Erhan, Wang, Qian, McVittie, James P., Nishi, Yoshio, Gibbons, James, and Dai, Hongjie, PNAS, 102, 45, 1614116145, (2005)Google Scholar
8. Mattevi, Cecilia, Tobias Wirth, Christoph, Hofmann, Stephan, Blume, Raoul, Cantoro, Mirco, Ducati, Caterina, Cepek, Cinzia, Knop-Gericke, Axel, Milne, Stuart, Castellarin Cudia, Carla, Dolafi, Sheema, Goldoni, Andrea, Schloegl, Robert and Robertson, John, J Phys. Chem. C 112, 32, 1220712213 (2008)Google Scholar
9. Zhong, Guofang, Iwasaki, Takayuki, Robertson, John, and Kawarada, Hiroshi, J Phys Chem B letters, 111, 19071910, 2007 Google Scholar
10. Chiodarelli, Nicoló, Kellens, Kristof, Cott, Daire J., Peys, Nick, Arstila, Kai, Heyns, Marc, De Gendt, Stefan, Groeseneken, Guido, and Vereecken, Philippe M., J Electrochem. Soc, 157, 10, K211-K217, (2010)Google Scholar
11. Hiraoka, Tatsuki, Yamada, Takeo, Hata, Kenji, Futaba, Don N., Kurachi, Hiroyuki, Uemura, Sashirou, Yumura, Motoo and Iijima, Sumio, J. Am. Chem. Soc., 128 (41), 1333813339, 2006 Google Scholar
12. de los Arcos, Teresa, Gunnar Garnier, M., Oelhafen, Peter, Mathys, Daniel, Won Seo, Jin, Domingo, Concepcion, Garcıa-Ramos, Jose Vicente, Sanchez-Cortes, Santiago, Carbon 42 (2004) 187190 Google Scholar
13. Marlo, M., Milman, V., Phys Rev B 62 2899 2000 Google Scholar
14. Tyson, W. R. and Miller, W. A., Surf. Sci. 62, 267, 1977 Google Scholar
15. Łodziana, Z., Topsøe, N.-Y., and Nøskov, J. K., Nature Mater. 3, 289, 2004 Google Scholar
16. Yan, C.Zhang, Allen, C. S., Bayer, B. C., Hofmann, S., Hickey, B. J., Cott, D., Zhong, G. and Robertson, J., JOURNAL OF APPLIED PHYSICS 108, 024311 (2010)Google Scholar
17. YOKOYAMA, Daisuke, IWASAKI, Takayuki, ISHIMARU, Kentaro, SATO, Shintaro, HYAKUSHIMA, Takashi, NIHEI, Mizuhisa, AWANO, Yuji, and KAWARADA, Hiroshi Jpn. J. Appl. Phys., 47, 4 (2008)Google Scholar
18. Ke, Xiaoxing, Bals, Sara, Cott, Daire, Hantschel, Thomas, Bender, Hugo, and Van, Gustaaf Tendeloo Microsc. Microanal. 16, 210217, 2010 Google Scholar
19. Chiodarelli, N., Li, Y., Cott, D. J., Mertens, S., Peys, N., Heyns, M., De Gendt, S., Groeseneken, G., Vereecken, P. M., Integration and electrical characterization of carbon nanotube via interconnects, Microelectronic Engineering (2010) - in publicationGoogle Scholar
20. Yamazaki, Yuichi, Katagiri, Masayuki, Sakuma, Naoshi, Suzuki, Mariko, Sato, Shintaro, Nihei, Mizuhisa, Wada, Makoto, Matsunaga, Noriaki, Sakai, Tadashi, and Awano, Yuji, Applied Physics Express 3 (2010) 055002 Google Scholar