Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T17:40:05.588Z Has data issue: false hasContentIssue false

Cluster Size Distributions in Different Temperature Regimes: The System Ga on GaAs(001)

Published online by Cambridge University Press:  21 February 2011

Y. Ren
Affiliation:
Department of Physics, University of Western Ontario, London, Ontario, Canada N6A 3K7
M. Zinke-Allmang
Affiliation:
Department of Physics, University of Western Ontario, London, Ontario, Canada N6A 3K7
L. C. Feldman
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, N.J. 07974, U.S.A.
W. Van Saarloos
Affiliation:
Instituut - Lorentz, University of Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands
Get access

Abstract

In this paper we discuss results for the clustering of Ga on GaAs(001). The dominant dynamic process which drives this system toward this three dimensional equilibrium changes from Ostwald ripening at low deposition rates to coalescence at higher deposition rates. The experimental data allow us to test several theoretical predictions for cluster size distributions based on a detailed study of the microscopic processes. These include, at higher deposition rates, the observation of local ripening effects and diffusion limited growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Biegelsen, D.K., Ponce, F.A., Krusor, B.S., Tramontana, J.C. and Yingling, R.D., Appl. Phys. Lett. 52, 1779 (1988).Google Scholar
[2] Venables, J.A., Spiller, G.D.T. and Hanbücken, M., Rep. Prog. Phys. 47, 399 (1984);CrossRefGoogle Scholar
Venables, J.A., J. Vac. Sci. Technol. B, 4, 870 (1986);CrossRefGoogle Scholar
Venables, J.A., Doust, T., Drucker, J.S. and Krishnamurthy, M. in Kinetics of Ordering and Growth at Surfaces, edited by Lagally, M.G. (Plenum, New York, 1990), p. 437.Google Scholar
[3] Zinke-Allmang, M., Feldman, L.C. and Nakahara, S., Appl. Phys. Lett. 51, 975 (1987);Google Scholar
Zinke-Allmang, M., Feldman, L.C. and Nakahara, S., Appl. Phys. Lett. 52, 144 (1988);Google Scholar
Feldman, L.C. and Zinke-Allmang, M., J. Vac. Sci. Technol. A, 8, 3033 (1990).CrossRefGoogle Scholar
[4] Zinke-Allmang, M., Feldman, L.C., Nakahara, S., and Davidson, B.A., Phys. Rev. B, 22, 7848 (1989);Google Scholar
Zinke-Allmang, M., Feldman, L.C., Nakahara, S. and Davidson, B.A. in Selected Topics in Electronic Materials, Vol. EA–18, edited by Appleton, B.R., Biegelsen, D.K., Brown, W.L. and Knapp, J.A. (Materials Research Society, Pittsburgh, 1989), p. 211.Google Scholar
[5] Feldman, L.C. and Mayer, J.W., Fundamentals of Surface and Thin Film Analysis, (Elsevier Science Publishers, New York, 1986);Google Scholar
Feldman, L.C., Mayer, J.W. and Picraux, S.T., Materials Analysis by Ion Channeling, (Academic, New York, 1982)Google Scholar
[6] Pashley, M.D., Haberem, K.W., Friday, W., Woodall, J.M. and Kirchner, P.D., Phys. Rev. Lett. 60, 2176 (1988).Google Scholar
[7] Zinke-Allmang, M., Scanning Microsc. 4, 523 (1990);Google Scholar
Zinke-Allmang, M., presented at the 10th Int. Conf. on Ion Beam Analysis 1991, Eindhoven, The Netherlands (to be published in Nucl. Instr. and Methods B).Google Scholar
[8] Chakraverty, B.K., J. phys. chem. Solids 28, 2401 (1967).CrossRefGoogle Scholar
[9] Neave, J.H., Dobson, P.J., Joyce, B.A. and Zhang, Jing, Appl. Phys. Lett. 47, 101 (1985).Google Scholar
[10] Hirth, J.P., J. Cryst. Growth 17, 63 (1972).CrossRefGoogle Scholar
[11] Mullins, W.W., J. Appl. Phys. 59, 1341 (1986);Google Scholar
Mullins, W.W. and Viñals, J., Acta Metall. 37, 991 (1989).Google Scholar
[12] Viovy, J.L., Beysens, D. and Knobler, C.M., Phys. Rev. A, 21, 4965 (1988).Google Scholar
[13] Zinke-Allmang, M., Feldman, L.C. and van Saarloos, W., 1991, unpublished data.Google Scholar