Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T06:26:12.109Z Has data issue: false hasContentIssue false

Cluster Model Study to the As2-Adsorption on GaAs(001)-Surfaces

Published online by Cambridge University Press:  10 February 2011

T. Marek
Affiliation:
Institut für Werkstoffwissenschaften, Lehrstuhl Mikrocharakterisierung, Universitát Erlangen-Ntirnberg, Germany
H. P. Strunk
Affiliation:
Institut für Werkstoffwissenschaften, Lehrstuhl Mikrocharakterisierung, Universitát Erlangen-Ntirnberg, Germany
S. Kunsági-Máté
Affiliation:
Research Group of Theoretical Chemistry, Janus Pannonius University, Pécs, Hungary
N. Mareka
Affiliation:
Research Group of Theoretical Chemistry, Janus Pannonius University, Pécs, Hungary
Get access

Abstract

We study by using ab-initio methods the adsorption of As2-molecules on a Gaterminated GaAs(001) surface. We represent the GaAs crystal by a Ga5As2H8 cluster, which is large enough to resemble the crystal but sufficiently small to be tractable in a computer in a reasonable time. We calculate the reaction path along the symmetry axis C2 of this cluster and obtain the reaction path by minimizing the total energy of the system (cluster plus molecule). In the calculated positions above the cluster we account for the possibility of the As2-molecule to rotate around the C2 symmetry axis and for a change in the distance between the As-atoms. As a main result we obtain that for heights above the (001) surface less than about 3.5A we find a clear influence of the discrete atomic surface structure on the reaction path of the As2-molecule.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Arthur, J.R., Surf. Sci. 43 (1974) 449.Google Scholar
[2] Foxon, C.T., Boudry, M.R., Joyce, B.A., Surf. Sci. 44 (1974) 69.Google Scholar
[3] Foxon, C.T., Joyce, B.A., Surf. Sci. 64 (1977) 293.Google Scholar
[4] Fukunishi, Y., Nakatsuji, H., Surf. Sci. 291 (1993) 271.Google Scholar
[5] Kunsági-Máté, S., Marek, N., Marek, T., Strunk, H.P., Surf.Sci. 365 (1996) 743.Google Scholar
[6] Snyder, L.C. and Wasserman, Z., Surf.Sci. 77 (1987) 52.Google Scholar
[7] Kenton, A.C. and Ribarsky, M.W., Phys.Rev.B 23 (1981) 2897.Google Scholar
[8] Hermann, K. and Bagus, P.S., Phys Rev.B. 20 (1979) 1603.Google Scholar
[9] Hellwege, K.H., Pies, W. and Weiss, A., Crystal Structure Data of Inorganic Compounds, Landolt Börnstein, New Series, Group III, Vol.7 (Springer, Berlin, 1979)Google Scholar
[10] Callomon, J.H., Hirota, E., Kuchitsu, K., Lafferty, W.J., Maki, A.G. and Pote, C.S., Structure Data of Free Polyatomic Molecules, Landolt Börnstein, New Series, Group II, Vol.7 (Springer, Berlin, 1976).Google Scholar
[11] Frisch, M.J., Head-Gordon, M. and Pople, J.A, Chem.Phys.Lett., 166 (1990) 281.Google Scholar
[12] Schlegel, H.B., J.Comp.Chem., 3 (1982) 214.Google Scholar
[13] Hay, P.J. and Wadt, W.R., J.Chem.Phys., 82 (1985) 270.Google Scholar
[14] Wadt, W.R. and Hay, P.J., J.Chem.Phys., 82 (1985) 284.Google Scholar
[15] Hay, P.J. and Wadt, W.R., J.Chem.Phys., 82 (1985) 299.Google Scholar