Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T15:31:59.876Z Has data issue: false hasContentIssue false

Clay-Polymer Nanocomposites: Polyether and Polyimide Systems

Published online by Cambridge University Press:  21 February 2011

Thomas J. Pinnavaia
Affiliation:
Department of Chemistry and Center for Fundamental Materials Research Michigan State University, East Lansing, Michigan 48824
Tie Lan
Affiliation:
Department of Chemistry and Center for Fundamental Materials Research Michigan State University, East Lansing, Michigan 48824
Padmananda D. Kaviratna
Affiliation:
Department of Chemistry and Center for Fundamental Materials Research Michigan State University, East Lansing, Michigan 48824
Muh S. Wang
Affiliation:
Department of Chemistry and Center for Fundamental Materials Research Michigan State University, East Lansing, Michigan 48824
Get access

Abstract

A new type of clay-polyether nanocomposite has been prepared by the self-polymerization of diglycidyl ether of bisphenol A in the galleries of acidic alkylammonium ion exchanged forms of montmorillonite. The acid catalyzed intragallery polymerization process leads to the spontaneous exfoliation to the 10Å-thick clay layers. Intra- and extragallery polymerization processes are distinguishable by DSC.

Clay-polyimide hybrid composites have also been prepared by the intercalation of polyamic acid in montmorillonites and subsequent thermal conversion to polyimide. In contrast to the completely exfoliated clay-polyether system, the polyimide system contain regularly intercalated clay aggregates in the polymer matrix. Although regular face-face clay layer aggregation is extensive, the clay-polyimide hybrid composite films exhibit greatly improved CO2 barrier properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Theng, B. K. G., Formation and Properties of Clay-Polymer Complexes. (Elsevier, New York, 1979).Google Scholar
2 Giannelis, E. P., JOM 44, 28 (1992).Google Scholar
3 Okada, A., Kawasumi, M., Usuki, A., Kojima, Y., Kurauchi, T. and Kamigaito, O., Mater. Res. Soc. Symp. Proc. 171,45 (1990)Google Scholar
4 Okada, A., Kawasumi, M., Kurauchi, T. and Kamigaito, O., Polym. Prepr. 28,447 (1987).Google Scholar
5 Usuki, A., Mizutani, T., Fukushima, Y., Fujimoto, M., Fukumori, K., Kojima, Y., Sato, N., Kurauchi, T. and Kamigaito, O. U. S. Patent 4 889 885 (1989).Google Scholar
6 Yano, K., Usuki, A., Okada, A., Kuraychi, T. and Kamigaito, O., Polym. Prepr. (Am. Chem. Soc., Polym. Div.) 32, 65 (1991).Google Scholar
7 Yano, K., Usuki, A., Okada, A., Kuraychi, T. and Kamigaito, O., J. Polym Sei: Polym. Chem. 31,2493 (1993).Google Scholar
8 Lin, Chi-Li, Lee, T. and Pinnavaia, T. J., ACS Symp. Ser. 499, 145 (1992).Google Scholar
9 Lee, T., Ph. D. Thesis, Michigan State University, 1992.Google Scholar
10 Sroog, C. E., Enerey, A. L., Abramo, S.V., Beer, C. E., Edwards, W. M. and Oliver, K. L., J. Polym. Sci. Part A: Polym. Chem. 3, 1373 (1965).Google Scholar
11 Kissinger, H. E., Anal. Chem. 29,1702 (1957).Google Scholar
12 Prime, R. B., Thermal Characterization of Polymeric Materials; Edited by Turi, E., (Academic, New York, 1981).Google Scholar
13 Ozawa, T. J., Therm. Anal. 2, 301 (1970).Google Scholar
14 Doyle, C. D., Anal. Chem. 33, 79 (1951).Google Scholar
15 Lagaly, G., Solid State Ionics 22, 43 (1986).Google Scholar
16 Nielsen, L.E., J. Macromol. Sci. (CHEM.) A1(5), 929 (1967).Google Scholar
17 Bissot, T. C., ACS Symp. Ser. 423, 225 (1989).Google Scholar
18 Van Damme, H., Levitz, P., Fripiat, J. J., Alcover, J. F., Gatineau, L. and Bergaya, F., Physiscs of Finely Divided Matter. Edited by Boccara, N., and Daoud, M. (Springer-Verlag: New York, 1985).Google Scholar