Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T15:48:38.809Z Has data issue: false hasContentIssue false

Classical and Quantum Simulations for Large Systems on Parallel Computers

Published online by Cambridge University Press:  01 January 1992

Priya Vashishta
Affiliation:
Concurrent Computing Laboratory for Materials Simulations
Rajiv K. Kalia
Affiliation:
Department of Physics & Astronomy and Department of Computer Science
Jin Yu
Affiliation:
Louisiana State University,Baton Rouge,LA 70803-4001
Get access

Abstract

Molecular dynamics (MD) method is used to investigate structural transformation and the loss of intermediate range order in SiO2 glass at very large positive pressures and the modification of SiO2 glass network at very large negative pressures. The nature of molecular vibrations in solid C60 has been studied with tight binding molecular dynamics (TBMD) method. Implementations of simulation algorithms on parallel computers are also discussed.

In a-SiO2 at high pressures, the height of the first sharp diffraction peak in S(q) is considerably diminished and its position shifts to larger wave vectors. At twice the normal density, Si-O bond length increases, Si-O coordination changes from 4 to 6, and O-Si-O band-angle changes from 109° to 90°. This is clearly a tetrahedral to octahedral transformation, which is observed recently by Meade, Hemley, and Mao in their diffraction experiments using synchrotron radiation.

MD simulations of porous silica are carried out in the density range 2.2 - 0.1 g/cm3 Internal surface area, pore surface-to-volume ratio, gyration radius, and fractal dimension are studied as a function of density. Simulations are in good agreement with the experimental results obtained by x-ray scattering. The results reveal a crossover of the structural correlations between short- to intermediate-range (< 8 Å) and fractal- to large-scale-regime (10 ~ 100 Å).

Dispersion and density of states (DOS) of inter- and intra-molecular phonons are calculated for orientationally ordered and disordered solid C60 using the TBMD method. Inter-molecular phonon DOS extends up to 7.6 meV and shows libron peaks at 2.4 meV and 3.7 meV in the orientationally ordered phase. Orientational disorder softens libron modes. Intra-molecular phonons below 70 meV also show significant dispersion. Our results are in good agreement with the recent inelastic neutron scattering experiments.

MD is a numerical approach which involves the solution of Newton's equations for particles in the system. The multiple-time-step (MTS) approach reduces this computation significantly by exploiting the different time scales for short-range and intermediate-range interactions. Using the linked-list scheme, parallel algorithms are designed to implement on the in-house 8-node iPSC/860, a MIMD (multiple instruction multiple data) machine. Our group has also developed a quantum dynamical simulation scheme for Computational Nanoelectronics based on the quantum molecular dynamics (QMD) method. The QMD algorithm has been implemented on the in-house 8,192-node MasPar, a SIMD (single instruction multiple data) architecture.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. The Physics and Technology of Amorphous SiO2. edited by Devine, R. A. B. (Plenum, New York, 1988).Google Scholar
2. Mozzi, R. L. and Warren, B. E., J. Appl. Cryst. 2, 164 (1969).Google Scholar
3. Moss, S. C. and Price, D. L., in Physics of Disordered Materials, edited by Adler, D., Fritzsche, H., and Ovshinsky, S. R. (Plenum, New York, 1985), p. 77.Google Scholar
4. Fuoss, F. H. et al. , Phys. Rev. Lett. 46, 1537 (1981); Fuoss, P. H. and Fisher-Colbrie, A., Phys. Rev. B 38, 1875 (1988).Google Scholar
5. Grimsditch, M., Phys. Rev. Lett. 52, 2379 (1984); Phys. Rev. B 34, 4372 (1986); Polian, A. and Grimsditch, M., Phys.Rev. B 41, 6086 (1990).Google Scholar
6. McMillan, P., Piriou, B., and Couty, R., J. Chem. Phys. 81, 4234 (1984); Velde, B. and Couty, R., J. Non-Cryst. Solids 94, 238 (1987).Google Scholar
7. Hemley, R. J., Mao, H. K., Bell, P. M., and Mysen, B.O., Phys. Rev. Lett. 57, 747 (1986).Google Scholar
8. Williams, Q. and Jeanloz, R., Science 239, 902 (1988).Google Scholar
9. Susman, S., et al. , Phys. Rev. B 43, 1194 (1991).Google Scholar
10. Meade, C., Hemley, R. J., and Mao, H. K., Phys. Rev. Lett. 69, 1387 (1992).Google Scholar
11. Stixrude, L. and Bukowinski, M. S. T., Phys. Rev. B 44, 2523 (1991).Google Scholar
12. Tsuneyuki, S., Matsui, Y., Aoki, H., and Tsukada, M., Nature 339, 209 (1989).Google Scholar
13. Tsuchida, Y. and Yagi, T., Nature 340, 217 (1989).Google Scholar
14. Tse, J. S. and Klug, D. D., Phys. Rev. Lett. 67, 3559 (1991).Google Scholar
15. Binggeli, N. and Chelikowsky, J. R., Nature 353, 344 (1991); Phys. Rev. Lett. 69, 2220 (1992).Google Scholar
16. Fricke, J., J. Non-Cryst. Solids 121, 188 (1990).Google Scholar
17. Drake, J. M. and Klafter, J., Physics Today, May, p. 46 (1990).Google Scholar
18. Stucky, G. D. and MacDougall, J. E., Science 247, 669 (1990).Google Scholar
19. Vashishta, P., Kalia, R. K., Rino, J. P., and Ebbsjö, I., Phys. Rev. B 41, 12197 (1990).Google Scholar
20. Kieffer, J. and Angell, C. A., J. Non-Cryst. Solids 106, 336 (1988).Google Scholar
21. Nakano, A., Bi, L., Kalia, R. K., and Vashishta, P., to be published.Google Scholar
22. Freltoft, T., Kjems, J. K., and Sinha, S. K., Phys. Rev. B 33, 269 (1986).Google Scholar
23. Vacher, R., Woignier, T., Pelous, J., and Courtens, E., Phys. Rev. B 37, 6500 (1986); Vacher, R., Woignier, T., Phalippou, J., and Pelous, J., J. Non-Cryst. Solids 106, 161 (1988).Google Scholar
24. Shaefer, D. W. and Keefer, K. D., Phys. Rev. Lett. 56, 2199 (1986).Google Scholar
25. Lours, T., Zarzycki, J., Craievich, A. F., and Aegerter, M. A., J. Non-Cryst. Solids 121, 216 (1990).Google Scholar
26. Heiney, P. A., et al. , Phys. Rev . Lett. 66, 2911 (1991).Google Scholar
27. David, W. I., et al. , Nature 353, 147 (1991).Google Scholar
28. Xu, C. H., Wang, C. Z., Chan, C. T., and Ho, K. M., J. Phys: Condens. Matter 4, 6047 (1992).Google Scholar
29. Lu, J., Li, X., and Martin, R. M., Phys. Rev. Lett. 68, 1551 (1992); Li, X., Lu, J., and Martin, R. M., preprint.Google Scholar
30. Cheng, A. and Klein, M. L., Phys. Rev. B 45, 1889 (1992); Sprik, M., Cheng, A., Klein, M. C., J. Phys. Chem. 96, 2027 (1992)Google Scholar
31. Yu, J., Kalia, R. K., and Vashishta, P., to be published.Google Scholar
32. Khan, F. S. and Broughton, J. Q., Phys. Rev. 39, 3688 (1989); Broughton, J. Q. and Khan, F. S., ibid. 40, 12098 (1989); Khan, F. S. and Broughton, J. Q., ibid. 43, 11754 (1991); Wang, C. Z., et al. , Phys. Rev. B 39, 8586 (1989); Wang, C. Z., et al. , Phys. Rev. Lett. 66, 189 (1991).Google Scholar
33. Neumann, D. A., et al. , Phys. Rev. Lett. 67, 3808 (1991); Copley, J. R. D., et al. , preprint; Pintschovius, L., et al. , preprint.Google Scholar
34. Rapaport, D. C., Comput. Phys. Commun. 62, 217 (1991).Google Scholar
35. Streett, W. B., Tildesley, D. J. and Saville, G., Mol. Phys. 35, 639 (1978).Google Scholar
36. Frenkel, D., in Simple Molecular Systems at High Density, Edited by Polian, A., Loubeyre, P. and Boceara, N. (Plenum, New York, 1989), p. 411.Google Scholar
37. Greenwell, D. L., Kalia, R. K., Patterson, J. C., and Vashishta, P., in Scientific Applications of the Connection Machine, Edited by Simon, H. D. (World Scientific, Singapore, 1989), p. 252; Int. J. High Speed Computing 1, 321 (1989).Google Scholar
38. Nakano, A., Kalia, R. K., de Leeuw, S. W., Greenwell, D. L., and Vashishta, P., Proceedings of Intel Workshop on Technology Focus, Timberline Lodge, OR, April 5-7, 1992.Google Scholar
39. Kalia, R. K., de Leeuw, S. W., Nakano, A., Greenwell, D. L., and Vashishta, P., SIAM J. Sci. Stat. Comput., submitted.Google Scholar
40. Nakano, A., Kalia, R. K., and Vashishta, P., SIAM J. Sci. Stat. Comput., submitted.Google Scholar
41. Kalia, R. K., de Leeuw, S. W., Nakano, A., and Vashishta, P., SIAM J. Sci. Stat. Comput., in press.Google Scholar
42. Nakano, A., Kalia, R. K., and Vashishta, P., SIAM J. Sci. Stat. Comput., submitted.Google Scholar
43. Richardson, J. L., Comput. Phys. Commun. 63, 84 (1991).Google Scholar