Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-19T08:33:15.672Z Has data issue: false hasContentIssue false

Chromophore Binding to In-vitro Engineered Bio-mimetic Surfaces

Published online by Cambridge University Press:  15 February 2011

Joseph M. Kinsella
Affiliation:
Department of Biomedical Engineering and Department of Chemistry, Purdue University, W. Lafayette, IN 47907
Albena Ivanisevic
Affiliation:
Department of Biomedical Engineering and Department of Chemistry, Purdue University, W. Lafayette, IN 47907
Get access

Abstract

The research presented here aims to mimic the highly specialized local environment of the retina and to exploit the principles that govern its function, in order to construct functional optical interfaces that can be used as biotransducers. In the retina, a chromophore isomerizes and the protein to which it binds changes shape. In this proof-of-concept experiment we engineer an artificial surface to mimic the physiochemical environment of the retina and the key reaction of the visual cycle. We immobilized small peptides on silicon and assessed changes in their surface properties upon chromophore binding via AFM. Our observations suggest that when binding occurs it is accompanied by conformational changes of the surface-anchored peptide.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1) Wald, G. J. Gen. Physiol. 1935, 19, 351371.Google Scholar
(2) Stecher, H.; Gelb, M. H.; Saari, J. C.; Palczewski, K. J. Biol. Chem. 1999, 274, 85778585.Google Scholar
(3) Chen, P.; Lee, T. D.; Fong, H. K. J. Biol. Chem. 2001, 276, 2109821104.Google Scholar
(4) Palczewski, K.; Hooser, J. P.; Garwin, G. G.; Chen, J.; Liou, G. I.; Saari, J. C. Biochem. 1999, 38, 1201212019.Google Scholar
(5) Radmacher, M.; Tillmann, R. W.; Fritz, M.; Gaub, H. E. Science 1992, 257, 19001905.Google Scholar
(6) Rief, M.; Gautel, M.; Oesterhelt, F.; Fernandez, J.; Gaub, H. E. Science 1997, 276, 11091112.Google Scholar
(7) Oesterhelt, F.; Oesterhelt, D.; Pfeiffer, M.; Engel, A.; Gaub, H. E.; Muller, D. J. Science 2000, 288, 143146.Google Scholar
(8) Hamers, R. J. J. Phys. Chem 1996, 100, 1310313120.Google Scholar
(9) Hugel, T.; Holland, N. B.; Cattani, A.; Moroder, L.; Seitz, M.; Gaub, H. E. Science 2002, 296, 11031109.Google Scholar
(10) Kurth, D. G.; Bein, T. Langmuir 1993, 9, 29652973.Google Scholar
(11) Oh, S. J.; Cho, S. J.; Kim, C. O.; Park, J.W. Langmuir 2002, 18, 17641769.Google Scholar
(12) Xiao, S. J.; Textor, M.; Spencer, N. D. Langmuir 1998, 14, 55075516.Google Scholar
(13) Irvine, D. J.; Ruzette, A. G.; Mayes, A. M.; Griffith, L. G. Biomacromolecules 2001, 2, 545556.Google Scholar
(14) Hong, H. G.; Jiang, M.; Sliger, S. G.; Bohn, P. W. Langmuir 1994, 10, 153158.Google Scholar
(15) Rezania, A.; Johnson, R.; Lefkow, A. R.; Healy, K. E. Langmuir 1999, 15, 69316939.Google Scholar
(16) Kallury, K. M.; Macdonald, P. M.; Thompson, M. Langmuir 1994, 10, 492499.Google Scholar
(17) Rotsch, C.; Radmacher, M. Langmuir 1997, 13, 28252832.Google Scholar
(18) Domke, J.; Radmacher, M. Langmuir 1998, 14, 33203325.Google Scholar