Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T17:49:47.900Z Has data issue: false hasContentIssue false

Chromium Oxide Sub-Micron Particles Fabricated by a Unique Technique: Laser-Induced Solution Deposition

Published online by Cambridge University Press:  17 March 2011

Zhenchen Zhong*
Affiliation:
Institute for Micromanufacturing and Physics Program, Louisiana Tech University, Ruston, LA 71272, U.S.A. and Department of Physics, Grambling State University, Grambling, LA 71245, U.S.A.
Get access

Abstract

We have demonstrated that well-dispersed sub-micron chromium oxide particles can be fabricated by laser-induced solution deposition (LISD) from the solution of CrCl2 solute dissolved in organic solvents containing THF and cyclohexane. The particles are uniform in composition and contain little contamination. The distribution of the particles is narrow in three sizes: 230 nm, 350 nm and 400 nm. We have discussed the kinetics of forming these three kinds of sub-micron particles and the difficulty in obtaining single-phase chromium oxide. We have successfully shown that LISD is a unique technique for fabricating submicron chromium oxide particles with uniform composition and controllable size with narrow particle size distribution. The kinetics (nucleation and growth mechanism) of forming three sizes of particles is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kawai, S. and Ueda, R., Electrochem, J.. Soc., 122, 32 (1975).Google Scholar
2. Wilkins, R., Amman, M., Ben-Jacob, E. and Jaklevic, R.C., Phys. Rev. B42, 8698 (1990).Google Scholar
3. Doudin, B., Gilbert, S., Redmond, D., Ansermet, J.P., Phys. Rev. Lett. 79, 933 (1997).Google Scholar
4. Schwarz, K., J. Phys., F16, L211 (1986).Google Scholar
5. Bratkovsky, A.M., Phys. Rev. B56, 2344 (1997).Google Scholar
6. Manoharan, S.S., Elefant, D., Reiss, G. and Goodenough, J.B., Appl. Phys. Lett. 72, 984(1998); X.W. Li, A. Gupta, T.R. McGuire, P.R. Duncombe, and G. Xiao, J. Appl. Phys. 85, 5585 (1999); K. Suzuki and P.M. Tedrow, Phys. Rev. B58, 11597 (1998).Google Scholar
7. Coey, J.D.M., Berkowitz, A.E., Balcells, L., Putris, F.F. and Barry, A., Phys. Rev. Lett. 80, 3815 (1998).Google Scholar
8. Kouvel, J.S., Rodbell, D.S., J. Appl. Phys. 38, 979 (1967).Google Scholar
9. Matar, S., Demazeau, G., Sticht, J., Eyert, V., and Kübler, J., J. de Physique I 2, 315 (1992).Google Scholar
10. Korotin, M.A., Anisimov, V.I., Khomskii, D.I. and Sawatzky, G.A., Phys. Rev. Lett. 80, 4305 (1998).Google Scholar
11. Lewis, S.P., Allen, P.B., and Sasaki, T., Phys. Rev. B55,10 253 (1997).Google Scholar
12. Lueken, H. van and Groot, R.A. de, Phys. Rev. B51, 7176 (1995).Google Scholar
13. Kulatov, E. and Mazin, I.I., J. Phys. Condens. Matter 2, 343 (1990).Google Scholar
14. Kämper, K.P., Schmitt, W., Güntherodt, G., Gambino, R.J., and Ruf, R., Phys. Rev. Lett. 59, 2788 (1987).Google Scholar
15. Weisendanger, R., Güntherodt, H.-J., Güntherodt, G., Gambino, R.J., and Ruf, R., Phys. Rev. Lett. 65, 247 (1990).Google Scholar
16. Soulen, R.J. et al. , Science 282, 85 (1998); Soulen, R.J. et al. , J. Appl. Phys. 85, 4589 (1999).Google Scholar
17. Brandle, H., Weller, D., Scott, J.C., Stichit, J., Oppeneer, P.M., and Guntherodt, G., Int. Mod. Phys., 7, 345 (1993).Google Scholar
18. Zhong, Z.C., Dowben, P.A. and Sellmyer, D.J., Materials Letters 37, 320 (1998); Z.C. Zhong, V. Holmes, P.A. Dowben and D.J. Sellmyer, Mat. Res. Soc. Symp. Proc. (2000) p. 231; P.A. Dowben, Z.C. Zhong and D.J. Sellmyer, U.S. Patent No. 6,025,038, (15 February 2000).Google Scholar
19. Hwang, S.D., Kher, S.S., Spencer, J.T. and Dowben, P.A., in Chemical Perspectives of Microelectronic Materials III, edited by Abernathy, C.R., Bates, C.W., Bohling, D.A. and Hobson, W.S., (Mat. Res. Soc. Symp. Proc. 282,1993) p.186, and references therein.Google Scholar
20. Cho, C.R., Payne, D.A. and Cho, S.L., Appl. Phys. Lett. 71, 3013 (1997).Google Scholar
21. Perkins, K., Hwang, C., Onellion, M., Kim, Y.G., and Dowben, P.A., Thin Solid Films, 198, 317 (1991); D.C. Mancini, S. Varma, J.K. Simons, R.A. Rosenberg and P.A. Dowben, J. Vac. Sci. Technol. B8, 1804 (1990); R. A. Rosenberg, F.K. Perkins, D.C. Mancini, G.R. Harp, B.P. Tonner, S. Lee, and P.A. Dowben, Appl. Phys. Lett., 58, 607 (1991).Google Scholar