Published online by Cambridge University Press: 31 January 2011
The role of thermal annealing and of CdCl2 as a main source of electrically active but vaporizable chlorine doping in chemical bath deposited CdS thin films is studied. The films were deposited on glass substrates from aqueous solution of either CdCl2, NH4Cl, NH4OH, and thiourea, or CdSO4, (NH4)2SO4, NH4OH, and thiourea. Films deposited in the presence of CdCl2 and annealed in H2 atmosphere at 310 and 420 °C show a resistivity lower than 10 Ω·cm, one order of magnitude less than for identically annealed films deposited in absence of CdCl2. Annealing at 420 °C in closed ampoules, where a counter pressure of CdCl2 builds up, leads to a lower resistivity on the order of 10−1 Ω·cm, confirming the key role of chlorine on the electronic properties. However, further characterization via photoluminescence raises new questions about chlorine-related defects and their role in the mechanisms that govern film resistivity.