Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T23:39:26.407Z Has data issue: false hasContentIssue false

The Chemistry of Detrital Aluminum in Zeolites Studied by Multinuclear NMR Spectroscopy and Other Techniques

Published online by Cambridge University Press:  28 February 2011

Richard H. Jarman*
Affiliation:
Exxon Research and Engineering Co., Rte. 22 East, Annandale, NJ 08801
Get access

Abstract

High resolution 27Al NMR spectroscopy has been used to study the dealumination of the A-type zeolite ZK4. The aluminum removed from the lattice during calcination undergoes reversible changes in coordination when treated in acidic and basic media. 2 5 Si NMR spectroscopy reveals that the changes are confined to the detrital aluminum species and do not affect the zeolite framework. Thermogravimetric analysis data combined with compositional data available from 29Si NMR spectra have been used to probe the state of charge of the detrital aluminum species and the nature of defects present in the lattice.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Klinowski, J., Thomas, J. M., Fyfe, C. A. and Gobbi, G. C., Nature, 296, 553 (1982).CrossRefGoogle Scholar
2. Englehardt, G., Lohse, U., Samoson, A., Magi, M., Tarmak, M. and Lippma, E., Zeolites, 2, 59 (1982)CrossRefGoogle Scholar
3. Maxwell, I. E., van Erp, W. A., Hays, G. R., Couperus, T., Huis, R. and Clague, A. D. H., J. Chem. Soc., Chem Commun., 523 (1982).Google Scholar
4. Fyfe, C. A., Gobbi, G. C., Hartman, J. S., Klinowski, J. and Thomas, J. M., J. Phys. Chem., 86, 1247 (1982).CrossRefGoogle Scholar
5. Klinowski, J., Thomas, J. M., Fyfe, C. A., Gobbi, G. C. and Hartman, J. S., Inorg. Chem., 22, 63 (1983).CrossRefGoogle Scholar
6. Muller, D., Gessner, W., Behrens, H. J. and Scholer, G., Chem. Phys. Lett., 79, 59 (1981).CrossRefGoogle Scholar
7. Freude, D., Frohlich, T., Pfeifer, H. and Scheler, G., Zeolites, 3, 171 (1983).CrossRefGoogle Scholar
8. Engelhardt, G., Lohse, U., Patzelova, V., Magi, M. and Lippmaa, E., Zeolites, 3, 233 (1983).CrossRefGoogle Scholar
9. Engelhardt, G., Lohse, U., Patzelova, V., Magi, M. and Lippmaa, E., Zeolites, 1, 239 (1983).CrossRefGoogle Scholar
10. See for example Beyer, H. K. and Belenykaja, I. in Catalysis by Zeolites, edited by B., Imelik, Elsevier Sci. Pub. Co. (1980).Google Scholar
11. Shannon, R. D., Gardner, K. H., Staley, R. H., Bergeret, G., Gallezot, P. and Auroux, A., J. Phys. Chem., 89, 4778 (1985).CrossRefGoogle Scholar
12. Corbin, D. R., Farlee, R. D. and Stucky, G. D., Inorg. Chem., 23, 2920 (1984).CrossRefGoogle Scholar
13. Freude, D., Haase, J., Pfeifer, H., Prager, D. and Scheler, G., Chem. Phys. Lett., 114, 143 (1985).CrossRefGoogle Scholar
14. Samoson, A., Lippmaa, E., Englehardt, G., Lohse, V. and Jerschkewitz, H. G., Chem. Phys. Lett., 134, 589 (1987).CrossRefGoogle Scholar
15. Ray, G. J., Meyers, B. L. and Marshall, C. L., Zeolites, 7, 307 (1987).CrossRefGoogle Scholar
16. Wadlinger, R. L., Rosinski, E. J. and Plant, C. J., U.S. patent, 3,375,205 (1968).Google Scholar
17. Fyfe, C. A., Kennedy, G. J., Kokotailo, G. T. and DeSchutter, C. T., J. Chem. Soc., Chem. Commun., 1093 (1984).Google Scholar
18. Kerr, G. T., Inorg. Chem., 5, 1537 (1966); G. T. Kerr, Canadian Patent, 817, 322 (1969).CrossRefGoogle Scholar
19. Jarman, R. H., Melchior, M. T. and Vaughan, D. E. W., A.C.S. Symposium Series 218, edited by Stucky, G. D. and Dwyer, F. G., 267 (1983).CrossRefGoogle Scholar
20. Jarman, R. H. and Melchior, M. T., J. Chem. Soc., Chem. Commun., 414 (1984).CrossRefGoogle Scholar
21. Uytterhoeven, J. B., Christener, L. G. and Hall, W. K., J. Phys. Chem., 69, 2117 (1965).CrossRefGoogle Scholar