Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T01:39:18.040Z Has data issue: false hasContentIssue false

Chemically Functional Alkanethiol Derivitized Magnetic Nanoparticles

Published online by Cambridge University Press:  10 February 2011

David A. Fleming
Affiliation:
The Pennsylvania State University, Department of Chemistry, 152 Davey Laboratory, University Park, PA, 16802, U.S.A.
Michael Napolitano
Affiliation:
The Pennsylvania State University, Department of Chemistry, 152 Davey Laboratory, University Park, PA, 16802, U.S.A.
Mary Elizabeth Williams
Affiliation:
The Pennsylvania State University, Department of Chemistry, 152 Davey Laboratory, University Park, PA, 16802, U.S.A.
Get access

Abstract

Chemically functional magnetic nanoparticles, comprised of an Fe core encased in a thin Au shell, have been prepared by sequential high temperature decomposition of organometallic compounds in a coordinating solvent. A novel approach to encapsulate the Fe core in Au has been developed. TEM analysis confirms that the nanoparticles are monodisperse (∼20%) with average diameters of 8nm. The nanoparticles were subsequently functionalized with alkanethiolate ligands, which prevent aggregation, enable solubility in a range of solvents (both hydrophobic and hydrophilic), and permit subsequent derivatization (e.g., via ligand exchange reactions). The functionalized particles are characterized using high-resolution transmission electron microscopy (HRTEM), X-ray powder diffraction (XRD) and ultraviolet-visible (UV-Vis) absorption spectroscopy.

We have utilized place-exchange to impart chemical functionality to the nanoparticles by attaching either (1) thiol-derivatized redox moieties (e.g., ferrocene) or (2) alkanethiols with terminal reactive groups such as alcohols, amines and carboxylic acids. This paper presents our preliminary investigations of the voltammetry of the former class of these magnetic core/shell nanoparticles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Shipway, A. N.; Katz, E.; Willner, I. Chem. Phys. Chem. 2000, 1, 1852.Google Scholar
2. For example, (a) Xia, Y.; Gates, B.; Yin, Y.; Lu, Y. Adv. Mat. 2000, 12, 693712.Google Scholar
(b) Haynes, C. L.; Van Duyne, R. P. J. Phys. Chem. B. 2001, 105, 55995611.Google Scholar
3. Recent examples include: (a) Taton, T. A.; Lu, G.; Mirkin, C. A. J. Am. Chem. Soc. 2001, 123, 51645165.Google Scholar
(b) Dubertret, B.; Calame, M.; Libchaber, A. J. Nat. Biotechnol. 2001, 19, 365370.Google Scholar
4. (a) Crooks, R. M.; Zhao, M. Q.; Sun, L.; Chechik, V.; Yeung, L. K. Acc. Chem. Res. 2001, 34, 181190.Google Scholar
(b) Somorjai, G. A.; Borodko, Y. G. Catal. Lett. 2001, 76, 15.Google Scholar
5. (a) Schmid, G. in Clusters and Colloids, from Theory to Applications; VCH Publishers:Weinheim, 1994.Google Scholar
(b) Ji, T.; Lirtsman, V. G.; Avny, Y.; Davidov, D. Adv. Mater. 2001, 13, 12531256.Google Scholar
6. (a) Ross, C. Annu. Rev. Mat. Sci. 2001, 21, 203235.Google Scholar
(b) Tsunashima, S. J. Phys. D – Appl. Phys. 2001, 34, R87–R102.Google Scholar
(c) Kirk, K. J. Contemp. Phys. 2000, 41, 6178.Google Scholar
(d) Weller, D.; Doerner, M. F. Annu. Rev. Mat. Sci. 2000, 30, 611644.Google Scholar
7. (a) Reynolds, C. H.; Annan, N.; Beshash, K.; Huber, J. H.; Shaber, S. H.; Lenkinski, R. E.; Wortman, J. A. J. Am. Chem. Soc. 2000, 122, 89408945.Google Scholar
(b) Goldstein, H.; Lumma, W.; Rudzik, A. Annu. Rep. Med. Chem. 1989, 24, 265276.Google Scholar
8. Wolf, S. A.; Awschalom, D. D.; Buhrman, R. A.; Daughton, J. M.; von Molnar, S.; Roukes, M. L.; Chtchelkanova, A. Y.; Treger, D. M. Science, 2001, 294, 14881495.Google Scholar
9. (a) Sun, S.; Fullerton, E. E.; Weller, D.; Murray, C. B. IEEE Trans. Mag. 2001, 37, 12391243.Google Scholar
(b) Sun, S. H.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Science 2000, 287, 19891992.Google Scholar
10. For example, (a) Burke, N. A. D.; Stover, H. D. H.; Dawson, F. P.; Lavers, J. D.; Jain, P. K.; Oka, H. IEEE Trans. Mag. 2001, 37, 26602662.Google Scholar
(b) Caruso, F.; Spasova, M.; Susha, A.; Giersig, M.; Caruso, R. A. Chem. Mater. 2001, 13, 109116.Google Scholar
11. Murray, C. B.; Sun, S.; Doyle, H.; Betley, T. MRS Bull. 2001, 26(12), 985991 Google Scholar
12. Kim, Y.; Johnson, R. C.; Li, J.; Hupp, J. T.; Schatz, G. C. Chem Phys Lett. 2002, 352, 421428.Google Scholar
13. Reiss, P.; Bleuse, J.; Pron, A. Nano Lett. 2002, 2, 781784.Google Scholar
14. The original reports include (a) Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. J. Chem. Soc., Chem. Commun. 1994, 801802.Google Scholar
(b) Brust, M.; Fink, J.; Bethell, D.; Schiffrin, D. J.; Kiely, C. J. Chem. Soc. Chem. Comm. 1995, 16551656.Google Scholar
15. (a) He, S. T.; Yao, J. N.; Jiang, P.; Shi, D. X.; Zhang, H. X.; Xie, S. S.; Pang, S. J.; Gao, H. J. Langmuir 2001, 17, 15711575.Google Scholar
16. (a) Yee, C.; Scotti, M.; Ulman, A.; White, H.; Rafailovich, M.; Sokolov, J. Langmuir 1999, 15, 43144316.Google Scholar
17. Novak, J. P.; Nickerson, C.; Franzen, S.; Feldheim, D. L. Anal. Chem. 2001, ASAP.Google Scholar
18. Uson, R.; Laguna, A. Inorg. Synth. 1998, 26, 85.Google Scholar
19. Chidsey, C. E. D.; Bertozzi, C. R.; Putvinski, T. M.; Mujsce, A. M. J. Am. Chem. Soc. 1990, 112, 43014306.Google Scholar
20. Ingram, R. S.; Hostetler, M. J.; Murray, R. W. J. Am. Chem. Soc. 1997, 119, 91759178.Google Scholar
21. (a) Ingram, R. S.; Murray, R. W. Langmuir 1998, 14, 41154121.Google Scholar
(b) Hostetler, M. J.; Green, S. J.; Stokes, J. J.; Murray, R. W. J. Am. Chem. Soc. 1996, 118, 42124213.Google Scholar
22. Bard, A; Faulkner, L. R. in Electrochemical Methods: Fundamentals and Applications, 2nd Edition, John Wiley & Sons, Inc.: New York, 2001.Google Scholar