Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T01:46:04.475Z Has data issue: false hasContentIssue false

Chemical Vapor Deposition of Silicon Films by Pulsed CO2 Laser Irradiaton of Silane

Published online by Cambridge University Press:  21 February 2011

Y. Pauleau
Affiliation:
Centre National d'Etudes des Té1écommunicationsB.P. 98, 38243 Meylan, France.
R. Stawski
Affiliation:
Centre National d'Etudes des Té1écommunicationsB.P. 98, 38243 Meylan, France.
Ph. Lami
Affiliation:
Centre National d'Etudes des Té1écommunicationsB.P. 98, 38243 Meylan, France.
G. Auvert
Affiliation:
Centre National d'Etudes des Té1écommunicationsB.P. 98, 38243 Meylan, France.
Get access

Abstract

Silane molecules have been irradiated by a pulsed CO2 laser operating at 10.59 μm. The threshold of silicon formation by homogeneous dissociation of silane has been investigated as a function of laser fluence (0.1–3.5 J/cm2) and silane pressure (1–100 Torr). Silicon films have been deposited on quartz substrates using the laser beam either perpendicular or parallel to the substrate surface. The crystallographic structure and deposition rate of these silicon films are found to be dependent on the incident angle of the laser beam, silane pressure, substrate temperature and laser fluence. The growth mechanism of these films is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Baranauskas, V., Mammana, C.I.Z., Klinger, R.E., and Greene, J.E., Appl. Phys. Lett. 36, 930932 (1980).Google Scholar
2. Ehrlich, D.J., Osgood, R.M. Jr., and Deutsch, T.F., Appl. Phys. Lett. 39, 957959 (1981).Google Scholar
3. Bauerle, D., Irsigler, P., Leyendecker, G., Noll, H., and Wagner, D., Appl. Phys. Lett. 40, 819821 (1982).Google Scholar
4. Bauerle, D., Leyendecker, G., Wagner, D., Bauser, E., and Lu, Y.C., Appl. Phys. A, 30, 147149 (1983).Google Scholar
5. Bauerle, D., Mat. Res. Soc. Symp. Proc. 17, 1928 (1983).Google Scholar
6. Christensen, C.P. and Lakin, K.M., Appl. Phys. Lett. 32, 254256 (1978).Google Scholar
7. Hanabusa, M., Namiki, A., and Yoshihara, K., Appl.Phys.Lett. 35,626627 (1979)Google Scholar
8. Bilenchi, R. and Musci, M. in :Chemical Vapor Deposition,Blocher, J.M.,Vuillard, G.E and Wahl, G.,Eds.,Proc.8th Intern.Conf.on CVD,81–7 (the Electrochemical Society Softbound Proceeding Series,Pennington,1981) pp.275283 Google Scholar
9. Bilenchi, R., Gianinoni, I., and Musci, M., J.Appl.Phys. 53,64796481(1982)CrossRefGoogle Scholar
10. Bilenchi, R., Gianinoni, I., Musci, M., and Murri, R., Mat. Res. Soc. Symp. Proc. 17, 199205 (1983).Google Scholar
11. Andreatta, R.W., Abele, C.C., Osmundsen, J.F., Eden, J.E., Lubben, D., and Greene, J.E., Appl. Phys. Lett. 40, 183185 (1982).Google Scholar
12. Andreatta, R.W., Lubben, D., Eden, J.E., and Greene, J.E., J. Vac. Sci. Technol. 20, 740741 (1982).CrossRefGoogle Scholar
13. Gattuso, T.R., Meunier, M., Adler, D., and Haggerty, J.S., Mat. Res. Soc. Symp. Proc. 17, 215222 (1983).Google Scholar
14. Meunier, M., Gattuso, T.R., Adler, D., and Haggerty, J.S., Appl. Phys. Lett. 43, 273275 (1983).Google Scholar
15. Deutsch, T.F., J. Cham. Phys. 70, 11871192 (1979).Google Scholar