Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-09T14:23:49.650Z Has data issue: false hasContentIssue false

Chemical Vapor Deposition of Oxides From Alkoxides

Published online by Cambridge University Press:  10 February 2011

R. Xu*
Affiliation:
Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112, [email protected]
Get access

Abstract

MOCVD of oxides can be achieved through deposition reaction schemes such as oxidation, thermal pyrolysis, plasma assisted pyrolysis, radiation-assisted pyrolysis or any combinations of these free-radical processes. Chemically mild and clean reaction schemes such as the hydrolysis-polycondensation and the hydrolysis-assisted pyrolysis reactions are found favorable for stoichiometric depositions using alkoxide complex precursors. We review the various reaction schemes and try to point out comparatively the advantages and disadvantages of each. Experiments in the deposition of lithium tantalate from alkoxide complex precursors are presented. Low deposition temperature, high deposition rate and autostoichiometry capabilities are demonstrated in the experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wemberg, A. A., Braunstein, G. H., and Gysling, H., “Improved solid phase epitaxial growth of lithium tantalate thin films on sapphire, using a two-step metalorganic chemical-vapor deposition process”, Appl. Phys. Lett., 63, 2649 (1993).Google Scholar
2. Xie, H. and Raj, R., “Epitaxial LiTaO3 thin film by pulsed metalorganic chemical vapor deposition from a single precursor”, Appl. Phys. Lett., 63, 3146 (1993).Google Scholar
3. Chour, K. W. and Xu, R., “Vapor deposition of lithium tantalate with volatile double alkoxide precursors”, Mater. Res. Soc. Symp. Proc., 335, 65 (1994) presented Nov. 29, 1993 MRS-Fall meeting.Google Scholar
4. Xu, R., “Autostoichiometric vapor deposition I: Theory”, J. Mater. Res., 10, 25362541 (1995).Google Scholar
5. Chour, K. W. and Xu, R., “Autostoichiometric vapor deposition II: Experiment”, J. Mater. Res., 10, 25422547 (1995).Google Scholar
6. Zhang, J., Stauf, G. T., Gardiner, R., Buskirk, P. Van, and Strinbeck, J., “Single molecular precursor metal-organic chemical vapor deposition of MgAl2O4 ”, L. Mater. Res., 9, 1333 (1994).Google Scholar
7. Bradley, D. C., “Metal Alkoxides as Precursors for Electronic and Ceramic Materials”, Chem. Rev., 89, 1317 (1989).Google Scholar
8. Sladek, K. J. and Gilbert, W. W., “Low Temperature Metal Oxide Deposition by Alkoxide Hydrolysis”, Proc. Int. Conf. on CVD (3rd), Salt Lake City, Utah, 24–27 April, 1973.Google Scholar
9. Huppertz, H. & Engl, W. L., IEEE Trans. Elect. Devices, Vol. ED–26, No. 4, 658 (1979).Google Scholar
10. Mackenzie, J. D. and Ulrich, D. R. eds., Sol-gel Optics, SPE Proc Vol.1328, (1990).Google Scholar
11. Mackenzie, J. D. ed., Sol-gel Optics II, SPIEProc. Vol.1758, (1992).Google Scholar