Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T15:33:05.344Z Has data issue: false hasContentIssue false

Chemical Vapor Deposition of Conformal Alumina Thin Films

Published online by Cambridge University Press:  10 February 2011

Bradley D. Fahlman
Affiliation:
Department of Chemistry, Rice University, Houston, Texas 77005
Andrew R. Barron*
Affiliation:
Department of Chemistry, Rice University, Houston, Texas 77005 Department of Mechanical Engineering and Materials Science, Rice University, Houston, Texas 77005
*
To whom correspondence should be addressed (http://python.rice.edu/-arb/Barron.html)
Get access

Abstract

Deposition of highly conformal alumina thin films has been carried out by hydrolysis of the liquid alane precursor, AlH3(NMe2Et). Deposition onto Si wafers, quartz and carbon fibers were all carried out utilizing a hot-wall atmospheric pressure chemical vapor deposition (APCVD) system, while deposition onto ceramic particles was accomplished in a simple fluidized-bed APCVD reactor. Films were characterized by SEM, microprobe and electrical conductivity measurements. Growth rates were on the order of 40 - 80 Å.min−1 at 165 °C. The conformality of the films was illustrated using silicon wafers that were etched prior to deposition.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Tombs, N. C., Wegener, H. A., Newman, R., Kenny, B. T., and Coppola, A. J., Proc. IEEE. 55, 1168 (1967).Google Scholar
2 Zaininger, K. H. and Waxman, A. S., IEEE Trans. Electron. Devic, 16, 333 (1963).Google Scholar
3 Hashimoto, S., Peng, J. L., and Gibson, W. M, Appl. Phys. Lett. 47, 1071 (1985).Google Scholar
4 Barron, A. R. in CVD of Non-Metals, Ed. by Rees, W.S. Jr., VCH, New York, 1996, pp. 262313.Google Scholar
5 Huas, T. H. and Armgarth, M., J. Electron. Mater. 16, 27 (1987).Google Scholar
6 Maruyama, T. and Arai, S., Appl. Phys. Lett. 60, 322 (1992).Google Scholar
7 Saraie, J., Kwon, J., and Yodogawa, Y., J. Electrochem. Soc. 132, 890 (1985).Google Scholar
8 Gordon, R. G., Kramer, K., and Liu, X., Mat. Res. Soc. Symp. Proc. 446, 383 (1997).Google Scholar
9 Simmonds, M. G., Gladfelter, W. L., Rao, N., Szymanski, W. W., Ahn, K. H., and McMurry, P. H., J. Vac. Sci. Technol. A9, 2782 (1991).Google Scholar
10 Gustin, K. M. and Gordon, R. G., J. Electronic Mater. 17, 509 (1988).Google Scholar
11 Simmonds, M. G., Phillips, E. C., Hwang, J. W., and Gladfelter, W. L., Chemtronics 5, 155 (1991).Google Scholar
12 Frigo, D. M., Eijden, G. J. M. van, Reuvers, P. J., and Smit, C. J., Chem. Mater., 6, 190 (1994).Google Scholar
13 Jang, T. W., Moon, W., Back, J. T., and Ahn, B. T., Thin Solid Films, 333, 137 (1998).Google Scholar
14 Barron, A. R. and Rees, W. S. Jr., Adv. Mater. Opt. Electr. 2, 271 (1993).Google Scholar
15 Fahlman, B. D. and Barron, A. R., unpublished results.Google Scholar
16 Gillan, E. G. and Barron, A. R., Chem. Mater., 9, 3037 (1997).Google Scholar
17 Landry, C.C. and Barron, A. R., Carbon, 33, 381 (1995).Google Scholar
18 Senzaki, y., Uhrhammer, D., Phillips, E. C. and Gladfelter, W. L. in Inorg. Synth., 31, 74 (1997).Google Scholar