Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T02:39:06.656Z Has data issue: false hasContentIssue false

Chemical Treatment Influence on the Glass Substrate to the Growth of V2O5/PANI Thin Film

Published online by Cambridge University Press:  31 January 2011

Elidia M. Guerra
Affiliation:
[email protected], Universidade Federal de São João del Rei, Ouro Branco, Brazil
Mirela C. Santos
Affiliation:
Rodrigo Fernando Bianchi
Affiliation:
[email protected], Universidade Federal de Ouro Preto, Ouro Preto, Brazil
Get access

Abstract

Growth of the vanadium pentoxide xerogel in the presence of the polyaniline thin film (V2O5/PANI) in different chemical treatment on substrate are presented. The in situ characterization studies revealed the presence of a lamellar structure for the V2O5/PANI hybrid material. The intercalation reaction was evidenced on the basis of the increase in the d-spacing as well as the displacement of the absorption bands toward lower energy levels. The growth of V2O5/PANI thin film, from direct reaction, on glasses substrate using pre-treated with cationic surfactant cetyl pyridinium chloride (CPC) and cetyl trimethylammonium bromide (CTAB) presented layers with a surface homogeneous. The UV/ozone and RCA treatment showed that the film had low adhesion on substrate compared with CPC and CTAB treatment. Furthermore, these results suggests that the CTAB and CPC treatment can be used, further, for V2O5/PANI LbL films using V2O5 gel as first layer as well as a promising candidate for applications as sensor for ammonia detection in poultry shed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 McDiarmid, A.G. Synth. Met. 125, 11 (2001).Google Scholar
2 Ou, R.Q. Samuels, R. J. Polym. Sci. B Polym. Phys. 37, 3473 (1999).Google Scholar
3 Travain, S.A. Souza, N.C. de, Balogh, D.T. Giacometti, J.A. J. Colloid and Interface Science 316, 292 (2007).Google Scholar
4 Mitchell, D.R.G. Attard, D.J. Triani, G. Thin Solid Films 441, 85 (2003).Google Scholar
5 Wertheimer, M.R. Martinu, L. Klemberg-Sapieha, J.E., and Czeremuszkin, G. Adhesion Promotion Techniques in Advanced Technologies (Mittal, K.L. and Pizzi, A. eds., Marcel Dekker, New York, 1999), p. 139.Google Scholar
6 Kern, W. and Puotinen, D.A. RCA Rev., 187 (1970).Google Scholar
7 Kern, W. J. Electrochem. Soc., 137 (6), 1887 (1990).Google Scholar
8 Sham, M.L. Li, J. Ma, P.C. and Kim, J.K. Journal of Composite Mat., 43, 1537 (2009).Google Scholar
9 Guerra, E.M. Silva, G.R. Mulato, M. Solid State Sciences, 11, 456 (2009).Google Scholar
10 Wu, C.G. DeGroot, D.C. Marcy, H.O. Schindler, J.L. Kannewurf, C.R. Liu, Y.J. Hirpo, W. Kanatzidis, M.G. Chem. Mater. 8, 1992 (1996).Google Scholar
11 Gharbi, N. Sanchez, C. Livage, J. Lemerle, J. Nejem, L. Lefebvre, J. Inorg. Chem. 21, 2758 (1982).Google Scholar
12 Livage, J. Chem. Mater. 3, 578 (1991).Google Scholar
13 Guerra, E. M. Ciuffi, K.J. Oliveira, H.P. J. Solid State Chem. 179, 3814 (2006).Google Scholar
14 Petkov, V. Trikalitis, P.N. Bozin, E.S. Bollinge, S.J. Vogt, T. Kanatzidis, M.G. J. Am. Chem. Soc. 124, 10157 (2002).Google Scholar
15 Baddour, R. Pereira-Ramos, J.P., Messina, R. Perichon, J. J. Electroanal. Chem. 314, 81 (1991).Google Scholar
16 Oliveira, H. P. Graeff, C.F.O. Brunello, C. A. Guerra, E. M. Journal of Non-Crystalline Solids 273, 193 (2000).Google Scholar