Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T18:09:09.589Z Has data issue: false hasContentIssue false

Chemical Transport Deposition of Purified Poly-Si Films from Metallurgical-grade Si Using Subatmospheric-pressure H2 Plasma

Published online by Cambridge University Press:  01 February 2011

Kiyoshi Yasutake
Affiliation:
[email protected], Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, Suita, Japan
Hiromasa Ohmi
Affiliation:
[email protected], Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, Suita, Japan
Hiroaki Kakiuchi
Affiliation:
[email protected], Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
Get access

Abstract

Purified Si film is prepared directly from metallurgical-grade Si (MG-Si) by chemical transport using subatmospheric-pressure H2 plasma. The purification mechanism is based on the selective etching of Si by atomic H. Since most metals are not etched by H, this process is efficient to reduce metal impurities in Si films. It is demonstrated that the concentrations of most metal impurities (Fe, Mn, Ti, Co, Cr, Ni, etc.) in the prepared Si film are in the acceptable range for applying it to solar-grade Si (SOG-Si) material, or below the determination limit of the present measurements. On the other hand B and P atoms, which make volatile hydrogen compounds such as B2H6 and PH3, are difficult to eliminate by the present principle. From the infrared absorption measurements of the etching product produced by the reaction between H2 plasma and MG-Si, it is found that the main etching product is SiH4. Therefore, a remote-type chemical transport process is possible to produce SiH4 gas directly from MG-Si. Combining other purifying principle (such as a pyrolysis filter), this process may have an advantage to eliminate B2H6 and PH3 from the produced SiH4 gas.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Pizzini, S., Appl. Phys. A96, 171 (2009).Google Scholar
2 Hesse, K., Schindlbeck, E., Dornberger, E. and Fischer, M., in Proc. 24th Eur. Photovltaic Solar Energy Conf., Hamburg, 2009, p.883.Google Scholar
3 Flamant, G., Kurtcuoglu, V., Murray, J. and Steinfeld, A., Sol. Energy Mater. Sol. Cells 90, 2099 (2006).Google Scholar
4 Degoulange, J., Perichaud, I., Trassy, C. and Martinuzzi, S., Sol. Energy Mater. Sol. Cells 92, 1269 (2008).Google Scholar
5 Wan, Y., Raghavan, P. S., Chartier, C., Talbott, J. and Khattak, C., Proc. 2006 IEEE 4th World Conf. on Photovoltaic Energy Conversion, Waikoloa, HI (IEEE, Piscataway, 2006), p. 1342.Google Scholar
6 Pires, J. C. S., Otubo, J., Baga, A. F. B. and Mei, P. R., J. Mater. Process. Technol. 169, 16 (2005).Google Scholar
7 Yuge, N., Baba, H., Sakaguchi, Y., Nishikawa, K., Terashita, H. and Aratani, F., Sol. Energy Mater. Sol. Cells 34, 243 (1994).Google Scholar
8 Hegedus, S., Prog. Photovolt. Res. Appl. 14, 393 (2006).Google Scholar
9 Illiberi, A., Sharma, K., Creatore, M. and Sanden, M. C. M. van de, Mater. Lett. 63, 1817 (2009).Google Scholar
10 Martin, I. T., Branz, H. M., Stradins, P., Young, D. L., Reedy, R. C. and Teplin, C. W., Thin Solid Films 517, 3496 (2009).Google Scholar
11 Ohmi, H., Yasutake, K. and Kakiuchi, H., WO/2007/049402, 3 May 2007.Google Scholar
12 Ohmi, H., Kakiuchi, H., Hamaoka, Y. and Yasutake, K., J. Appl. Phys. 102, 023302 (2007).Google Scholar
13 Ohmi, H., Kishimoto, K., Kakiuchi, H. and Yasutake, K., J. Phys. D41, 195208 (2008).Google Scholar
14 Kamada, D., Kishimoto, K., Kakiuchi, H., Yasutake, K. and Ohmi, H., Surf. Interface Anal. 40, 979 (2008).Google Scholar
15 Ohmi, H., Goto, A., Kamada, D., Hamaoka, Y., Kakiuchi, H. and Yasutake, K., Appl. Phys. Lett. 95, 181506 (2009).Google Scholar
16 Webb, A. P. and Veprek, S., Chem. Phys. Lett. 62, 173 (1979).Google Scholar
17 Matsumura, H., Kamesaki, K., Masuda, A. and Izumi, A., Jpn. J. Appl. Phys. 40, L289 (2001).Google Scholar
18 Ohmi, H., Kakiuchi, H., Nishijima, K., Watanabe, H. and Yasutake, K., Jpn. J. Appl. Phys. 45, 8488 (2006).Google Scholar
19 Badding, J. V., Hemley, R. J. and Mao, H. K., Science 253, 421 (1991).Google Scholar
20 Borchers, C., Khomenko, T. I., Lenov, A. V. and Morozova, O. S., Thermochim. Acta 493, 80 (2009).Google Scholar
21 Sandrock, G., Reilly, J., Graetz, J., Zhou, W.-M., Johnson, J. and Wegrzyn, J., Appl. Phys. A80, 687 (2005).Google Scholar
22 Bartlome, B., Feltrin, A. and Balif, C., Appl. Phys. Lett. 94, 201501 (2009).Google Scholar
23 Morrison, P. W. Jr and Haigis, J. R., J. Vac. Sci. Technol. A11, 490 (1993).Google Scholar
24 Davis, J. R., Rohatgi, A., Hopkins, R. H., Blais, P. D., Rai-Choudhury, P., McCormick, J. R., Mollenkopf, H. C., IEEE Trans. on Electron Dev. ED-27, 677 (1980).Google Scholar
25 Hopkins, R. H., Davis, J. R., Rohatgi, A., Hanes, M. H., Rai-Chaudhury, P. and Mollenkopf, H. C., Final Report, DOE/JPL- 954331-82/13 (1982).Google Scholar
26 Dietl, J., Sol. Cells 10, 145 (1983).Google Scholar
27 Gribov, B. G. and Zinov'ev, K. V., Inorg. Mater. 39, 653 (2003).Google Scholar
28 Funaki, T., Nakahama, Y., Kadono, M., Yasutake, K. and Ohmi, H., Ext. Abst. 70th Autumn Meeting, 2009, Jpn. Soc. Appl. Phys., 10p–N.Google Scholar
29 , Izumi, Sato, H., Hashioka, S., Kubo, M. and Matsumura, H., Microelectron. Eng. 51–52, 495 (2000).Google Scholar
30 Sasaki, K. and Takada, T., Jpn. J. Appl. Phys. 37, 402 (1998).Google Scholar
31 Ohmi, H., Yasutake, K., Nakahama, Y. and Funaki, T., WO/2009/154232, 23 Dec. 2009.Google Scholar
32 Ohmi, H., Yasutake, K., Nakahama, Y., Funaki, T. and Kadono, M., Ext. Abst. 57th Spring Meeting, 2010, Jpn. Soc. Appl. Phys., 19a–ZB.Google Scholar