Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T07:22:31.019Z Has data issue: false hasContentIssue false

Chemical Speciation by NEXAFS Spectromicroscopy: Insights from Molecular Modelling of Polymers

Published online by Cambridge University Press:  15 February 2011

S. G. Urquhart
Affiliation:
McMaster University, Brockhouse Inst. for Materials Research, Hamilton, Canada L8S 4M1
A. P. Hitchcock
Affiliation:
McMaster University, Brockhouse Inst. for Materials Research, Hamilton, Canada L8S 4M1
E. G. Rightor
Affiliation:
Dow Chemical USA, Texas Polymer Centre, Freeport, TX 77541
A. P. Smith
Affiliation:
North Carolina State University, Department of Physics, Raleigh, NC 27695
H. Ade
Affiliation:
North Carolina State University, Department of Physics, Raleigh, NC 27695
Get access

Abstract

Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy of polymers performed in a scanning transmission X-ray microscope (STXM) can provide chemical speciation with <0.1 gm spatial resolution in imaging mode. The core excitation spectra of molecular compounds that are structural analogues of polymers help interpret the NEXAFS spectra of polymers. The effect of nt-delocalization on polymer NEXAFS is discussed and illustrated by comparison to molecular spectra. Extended Htickel calculations are particularly useful for providing insight into the relationship between chemical structure and the molecular and polymer spectra. We report the interpretation of experimental NEXAFS spectra of polyethylene terephthalate (PET). Molecular models indicate that NEXAFS will be sensitive to structural isomerization in polyester polymers. We demonstrate the capability of NEXAFS to distinguish hard-segment and soft-segment phase segregation in polyurethanes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ade, H., Zhang, X., Cameron, S., Costello, C., Kirz, J., and Williams, S., Science 258, 972 (1992); H. Ade, A. P. Smith, S. Cameron, R. Cieslinkski, G. Mitchell, B. Hsiao and E G. Rightor, Polymer 36, 1843 (1995).Google Scholar
2. Kirz, J., Jacobsen, C., and Howells, M., Quarterly Rev. Bio. Physics 33, 33 (1995).Google Scholar
3. Jacobsen, C., Williams, S., Anderson, E., Brown, M.T., Buckley, C.J., Kern, D., Kirz, J., Rivers, M., and Zhang, X., Optics Comm. 86, 351 (1991).Google Scholar
4. Zhang, X., Jacobsen, C., and Williams, S., in Soft X-ray Microscopy, edited by Jacobsen, C. and Trebes, J. (Proc. SPIE 1741, 1992) pp. 251259.Google Scholar
5. Rightor, E.G., Mitchell, G., Fischer, D., Hitchcock, A.P., Urquhart, S.G., Leapman, R. D., Smith, A.P., Ade, H., Shin, H.J. and Warwick, T., J. Phys. Chem. 1996 (submitted).Google Scholar
6. Hitchcock, A.P., Physica Scripta, T 31, 159 (1990).Google Scholar
7. Outka, D.A.,Stöhr, J., In Chemistry and Physics of Solid Surfaces, edited by Vanselow, R. and Howe, R. (Springer Series in Surface Science 10; Springer: Berlin, 1988) pp. 201.Google Scholar
8. Urquhart, S.G., Hitchcock, A.P., Leapman, R D., Priester, R.D. and Rightor, E.G., J. Polym. Sci.: Part B: Polym. Phys. 33, 1593 (1995); S.G. Urquhart, A.P. Hitchcock, R.D. Priester and E G. Rightor, J. Polym. Sci.: Part B: Polym. Phys. 33, 1603 (1995).Google Scholar
9. Schwarz, W.H.E., Chang, T.C., Seeger, U., Huang, K.H., Chem. Phys. 117, 73 (1987).Google Scholar
10. Brisse, P.F., Pérez, S., Acta Cryst B. 32, 2110 (1976).Google Scholar
11. Hitchcock, A.P., Urquhart, S. G. and Rightor, E.G., J. Phys. Chem 96, 8736 (1992).Google Scholar
12. Christenson, C P., Harthcock, M.A., Meadows, M.D., Spell, H.L., Howard, W.L., Creswick, M.W., Guerra, R.E., and Turner, R.B., J. Pol. Sci. B: Polym. Phys. 24, 1401 (1986).Google Scholar