Hostname: page-component-7bb8b95d7b-l4ctd Total loading time: 0 Render date: 2024-10-06T02:18:03.854Z Has data issue: false hasContentIssue false

Chemical Reactions at the in Vacuo Au/Inp Interface

Published online by Cambridge University Press:  25 February 2011

R. Stanley Williams
Affiliation:
Dept.of Chemistry γ Biochemistry and Solid State Science CenterUniversity of California, Los angeles, CA 90024
C. Thomas Tsai
Affiliation:
Dept.of Chemistry γ Biochemistry and Solid State Science CenterUniversity of California, Los angeles, CA 90024
Eun-Hee Cirlin
Affiliation:
Hughes Research Laboratories, 3011 Malibu Canyon Rd. Malibu, CA 90265
Get access

Abstract

The reaction between a Au film and an Inp substrate occurs much more readily in vacuo than under an external pressure of an inert ga. At atmospheric pressure, the compounds Au2P3 and the γ intermetallic compound (at times designated Au7In3, Au9In4, or Au2In) are formed at 450 °C and remain fairly stable even when annealed at 500°C for hours. Under ultra-high vacuum conditions, phosphorous readily escapes from the film when a sample is annealed at 300°C for 15 minutes, and the major reaction products are the ψ phase (Au3In2) and another intermetallic compound that is probably AuIn. The presence of an inert gas creates a kinetic barrier for the escape of phosphorous from the surface, and thus Au/InP behaves more like a closed thermodynamic system under pressure than in a vacuum.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Williams, R.H., Varma, R.R., and McKinley, A., J. Phys. C: Solid State Phys. 10, 4545 (1977).CrossRefGoogle Scholar
2 Hiraki, A., Shuto, K., Kim, S., Kammsara, W., and Iwami, M., Appl.Phys. Letts. 31, 611 (1977).Google Scholar
3. Chye, P.W., Lindau, I., Pianetta, P., Garner, C.M., Su, C.Y. and Spicer, W.E., Phys.Rev. B 18, 5545 (1978).Google Scholar
4. Brillson, L.J., Brucker, C.F., Katnani, A.D., Stoffel, N.G., and Margaritondo, G., J.Vac Sci.Technol. 19, 661 (1981).Google Scholar
5. Vandenberg, J. M., Temkin, H., Hamm, R. A., and DiGiuseppe, M. A., J. Appl. Phys. 53, 7385 (1982); Thin Solid Films 104, 419 (1983).Google Scholar
6. Mojzes, I., Szigethy, D., and Veresegyhazy, R., Electr. Letts. 19, 117 (1983).CrossRefGoogle Scholar
7. Petro, W.G., Kendelewicz, T., Babalola, I.A., Lindau, I., and Spicer, W.E., J.Vac.Sci.Technol. A 2, 835 (1984).Google Scholar
8. Kim, H.B., Lovas, A.F., Sweeny, G.G and Heng, T.M.S., Inst.Phys. Conf., Ser. No. 33b, 145 (1977).Google Scholar
9. Tuck, B., Ip, K.T., and Eastman, L.F., Thin Solid Films 55, 41 (1978).Google Scholar
10. Szydlo, N. and Olivier, J., J.Appl.Phys. 50, 1445 (1979).Google Scholar
11. Keramidas, V.G., Temkin, H. and Hahajan, S., Inst. Phys Conf., Ser. No. 56, 293 (1980).Google Scholar
12. Piotrowska, A., Auvray, P., Guivarch, A., Pelous, G., and Henoc, P., J.Appl.Phys. 52, 5112 (1981).Google Scholar
13. Camlibel, I., Chin, A.K., Ermanis, F., DiGiuseppe, M.A., Lourenco, J.A. and Bonner, W.A., J.Electrochem.Soc.: Solid-State Sci. & Technol. 129, 2586 (1982).Google Scholar
14. Brasen, D., Karlicek, R.F. and Donnelly, V.M., J. Electrochem. Soc.: Electrochem Sci. and Technol. 130, 1473 (1983).Google Scholar
15. Tsai, C.T. and Williams, R.S., Mats, J., Res. 1, xxx (1986).Google Scholar
16. Pugh, J.H. and Williams, R.S., J.Mats Res. 1, 343 (1986).Google Scholar