Article contents
Chemical Precursor Routes to Nanostructured Non-oxide Ceramics
Published online by Cambridge University Press: 01 February 2011
Abstract
An efficient route to boron carbide, boron nitride, and silicon carbide ceramic nanofibers and nanotubules has been developed which employs newly developed molecular and polymeric precursors in conjunction with porous alumina templating methods. Melt infiltration or vacuum filtration of solutions of 6,6 -(CH2)6-(B10H13)2 or polyhexenyldecaborane through alumina templates followed by pyrolysis and dissolution of the membranes in 48% HF yielded boron carbide nanofibers or nanotubules. Boron nitride nanotubules were generated in a similar fashion by employing polyborazylene as a precursor, while silicon carbide nanotubules were generated from the commercially available allylhydridopolycarbosilane (AHPCS) polymeric precursor. In all cases, SEM and TEM analyses showed aligned, monodispersed ensembles of nanofibers or nanotubules. Structural control of the end products can be achieved through changes in concentration of the precursor solution, the number of alumina membrane treatments, and/or pore size of the alumina template.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2002
References
- 4
- Cited by