Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T15:44:50.129Z Has data issue: false hasContentIssue false

A Chemical Gas Sensor from Large-Scale Thermal CVD Derived Graphene

Published online by Cambridge University Press:  03 March 2011

Xiaojuan Song*
Affiliation:
Electro-Optical System Lab, Georgia Tech Research Institute, Atlanta, Georgia 30332, U.S.A.
Brent Wagner
Affiliation:
Electro-Optical System Lab, Georgia Tech Research Institute, Atlanta, Georgia 30332, U.S.A.
Zhitao Kang
Affiliation:
Electro-Optical System Lab, Georgia Tech Research Institute, Atlanta, Georgia 30332, U.S.A. School of Material Science Engineering, Georgia Institute of Technology, Atlanta, GA 30332, U.S.A
*
*Address correspondence to: [email protected]
Get access

Abstract

Large-scale graphene sheets were grown on thin nickel film coated Si substrates using a reliable and repeatable thermal Chemical Vapor Deposition (CVD) technique. The graphene films were then transferred onto a SiO2 coated Si wafer to fabricate a 5 mm x 5 mm resistive sensor structure. Raman spectroscopy analysis confirmed the existence of graphene. Preliminary sensing results were demonstrated by the detection of hazardous gases such as NO2 and MMH (mono-methyl hydrazine). Characterization of the device channel resistivity (switching response) was conducted as a function of the analyte type and concentration. The sensor response indicates a charge transfer mechanism between the analytes and graphene.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Geim, A.K. & Novoselov, K.S. The rise of graphene. Nat. Mater. 6, 183-191 (2007).Google Scholar
[2] Schedin, F.; Geim, A.K.; Morozov, V.; Hill, E.W.; Blake, P.; Katsnelson, M.I.; Novoselov, K.S. Detection of individual gas molecules adsorbed on graphene. Nat.Mater. 6, 652655 (2007).Google Scholar
[3] Echtermeyer, T.J.; Lemme, M.C.; Baus, M.; Szafranek, B.N. Geim, A.K. Kurz, H. Nonvolatile switching in graphene field-effect devices. IEEE Electron Device Lett., 29, 952954 (2008).Google Scholar
[4] Kong, J.; Franklin, N.R.; Zhou, C.; Chapline, M.G.; Peng, S.; Cho, K.; Dai, H. Nanotube molecular wires as chemical sensors. Science, 287 622-625 (2000).Google Scholar
[5] Chang, H.; Jae Do, L.; Seung Mi, L.; Young Hee, L. Adsorption of NH3 and NO2 molecules on carbon nanotubes. Appl.Phys.Lett. 79, 38633865 (2001).Google Scholar
[6] Zhao, J.; Bildum, A.; Han, J.; Lu, J.P. Gas molecule adsorption in carbon nanotube and nanotube bundles. Nanotechnology, 13, 195200 (2002).Google Scholar
[7] Qi, P.; Vermesh, O.; Grecu, M.; Javey, A.; Wang, Q.; Dai, H. Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection. Nano Lett. 3, 347351 (2003).Google Scholar
[8] Novak, J.P.; Snow, E.S.; Houser, E.J.; Park, D.; Stepnowski, J.L.; McGill, R.A. Nerve agent detection using networks of single walled carbon nanotubes. Appl.Phys.Lett. 83, 40264028 (2003).Google Scholar
[9] Kim, K.S. et al. . Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature. Vol 457, 706710 (2009).Google Scholar
[10] Li, X.S.; Cai, W.W.; An, J.H.; Kim, S.; Nah, J.; Yang, D.X.; Piner, R.; Velmakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S.K.; Colombo, L.; Ruoff, R.S. Large-are synthesis of high-quality and uniform graphene films on copper foils,, Science 324, 13121314 (2009).Google Scholar
[11] Reina, A.; Jia, X.T.; Ho, J.; Nezich, D.; Son, H.B.; Bulovic, V.; Dresselhaus, M.S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition, Nano Lett. 9, 3035 (2009).Google Scholar
[12] Ferrari, A.C.; Meyer, J.G. Scardaci, V. Casiraghi, C.; Lazzeri, M.; Mauri, F. et al. . Raman spectrum of graphene and graphene layers. Phys.Rev.Lett, 97, 187401 (2006).Google Scholar
[13] Ferri, A.C. Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun, 143, 4757 (2007).Google Scholar
[14] Malard, L.M.; Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S. Raman spectroscopy in graphene. Phys. Rep, 473, 5187 (2009).Google Scholar
[15] Thomsen, C.; Reich, S. Double resonant Raman scattering in graphite. Phys. Rev Lett. 85, 52145217 (2000).Google Scholar
[16] Ferrari, A.C.; Robertson, J.; Resonant Raman spectroscopy of disordered, amorphous, and diamond like carbon. Phys.Rev.B 64, 075414 (2001).Google Scholar
[17] Faugeras, C.; Nerriere, A.; Potemski, K.; Mahmood, A.; Dujardin, E.; Berger, C.; et al. . Few-layer graphene on SiC, pyrolitic graphite, and graphene; A Raman scattering study. Appl. Phys. Lett. 92, 011914 (2008).Google Scholar
[18] Calizo, I., Balandin, A.A.; Bao, w.; Miao, F.; Lau, C.N. ; Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano Lett. 7, 26452645 (2007).Google Scholar
[19] Leenaerts, O.; Partoens, B.; Peeters, F.M. Adsorption of small molecules on graphene. Microelectronics Journal. 40, 860-862 (2008).Google Scholar
[20] Wehling, T.O.; Novoslov, K.S. Morozov, S.V. Vdovin, E.E.; Katsnelson, M.I.; Geim, A.K.; Lichtenstein, A.I. Molecular doping of graphene. Nano Lett. 8, 173177 (2008).Google Scholar